I\'m trying to implement blend modes from the PDF specification, for my own pleasure, in SASS.
PDF Specification: http://www.adobe.com/content/dam/Adobe/en/devnet/acroba
The SVG spec has a lot of good equations for various blending modes. And yes, you do have to calculate both the new alpha and the new colour -- for each channel. For standard blending modes, the alpha is calculated this way:
alpha_final = alpha_bg + alpha_fg - alpha_bg * alpha_fg
Note: I see you're considering alpha to be between 0 and 1, which is good. Alpha values in CSS are always defined as float values from 0 to 1; it's good to stick with this convention, because it makes the calculations immensely easier.
It helps to 'premultiply' each colour channel by its alpha; these are more helpful for interpreting and using the usual formulae:
colour_bg_a = colour_bg * alpha_bg
In other words:
red_bg_a = red_bg * alpha_bg
green_bg_a = green_bg * alpha_bg
blue_bg_a = blue_bg * alpha_bg
Then, for plain-jane alpha compositing (like overlaying sheets of tracing paper, also known as src-over
in Porter and Duff's original paper and the SVG alpha compositing spec), you take each channel and calculate it thus:
colour_final_a = colour_fg_a + colour_bg_a * (1 - alpha_fg)
The last step is to 'un-multiply' each final colour channel value by the final alpha:
colour_final = colour_final_a / alpha_final
and put it into your mixin somehow:
rgba(red_final, green_final, blue_final, alpha_final)
The other blending modes (multiply, difference, screen, etc) are slightly more complicated formulas, but the concept for every single mode is the same:
If you're still interested in this, I've been doing the very thing in Stylus. You can see my progress here: https://github.com/pdaoust/stylus-helpers/blob/master/blend.styl You might be able to use it as a starting point for your own Sass mixin.
The first thing I do is convert all the R, G, and B values from 0 - 255 values to 0 - 1 float values for the purposes of the calculations. Dunno if that's necessary, and it does require converting them back to 0 - 255 values. It felt right to me, and Porter and Duff worked in 0 - 1 float values in their original paper.
(I'm encountering trouble with some of the compositing modes, which produce wildly different results from the expected results that the SVG spec pictures. I suspect that the spec gives the wrong equations. If anyone knows about Porter/Duff blending modes, I'd be very grateful for their help!)