I\'ve a relatively large graph with Vertices: 524 Edges: 1125, of real world transactions. The edges are directed and have a weight (inclusion is optional). I\'m trying investig
In regard to "how to control the number of communities" in OPs question, I use the cut_at function on the communities to cut the resulting hierarchical structure into a desired number of groups. I hope someone can confirm that I am doing something sane. Namely, consider the following:
#Generate graph
adj.mat<- matrix(,nrow=200, ncol=200) #empty matrix
set.seed(2)
##populate adjacency matrix
for(i in 1:200){adj.mat[i,sample(rep(1:200), runif(1,1,100))]<-1}
adj.mat[which(is.na(adj.mat))] <-0
for(i in 1:200){
adj.mat[i,i]<-0
}
G<-graph.adjacency(adj.mat, mode='undirected')
plot(G, vertex.label=NA)
##Find clusters
walktrap.comms<- cluster_walktrap(G, steps=10)
max(walktrap.comms$membership) #43
[1] 6 34 13 1 19 19 3 9 20 29 12 26 9 28 9 9 2 14 13 14 27 9 33 17 22 23 23 10 17 31 9 21 2 1
[35] 33 23 3 26 22 29 4 16 24 22 25 31 23 23 13 30 35 27 25 15 6 14 9 2 16 7 23 4 18 10 10 22 27 27
[69] 23 31 27 32 36 8 23 6 23 14 19 22 19 37 27 6 27 22 9 14 4 22 14 32 33 27 26 14 21 27 22 12 20 7
[103] 14 26 38 39 26 3 14 23 22 14 40 9 5 19 29 31 26 26 2 19 6 9 1 9 23 4 14 11 9 22 23 41 10 27
[137] 22 18 26 14 8 15 27 10 5 33 21 28 23 22 13 1 22 24 14 18 8 2 18 1 27 12 22 34 13 27 3 5 27 25
[171] 1 27 13 34 8 10 13 5 17 17 25 6 19 42 31 13 30 32 15 30 5 11 9 25 6 33 18 33 43 10
Now, note that there are 43 groups but we want coarser cuts hence, examine the dendrogram:
plot(as.hclust(walktrap.comms), label=F)
And cut based on it. I arbitrarily chose 6 cuts but nevertheless, you now have coarser clusters
cut_at(walktrap.comms, no=6)
[1] 4 2 5 4 5 5 3 5 3 4 3 5 5 3 5 5 3 1 5 1 1 5 1 6 1 1 1 4 6 5 5 2 3 4 1 1 3 5 1 4 6 6 3 1 5 5 1 1 5 4 3 1
[53] 5 2 4 1 5 3 6 3 1 6 6 4 4 1 1 1 1 5 1 4 3 3 1 4 1 1 5 1 5 2 1 4 1 1 5 1 6 1 1 4 1 1 5 1 2 1 1 3 3 3 1 5
[105] 3 3 5 3 1 1 1 1 3 5 2 5 4 5 5 5 3 5 4 5 4 5 1 6 1 3 5 1 1 1 4 1 1 6 5 1 3 2 1 4 2 1 2 3 1 1 5 4 1 3 1 6
[157] 3 3 6 4 1 3 1 2 5 1 3 2 1 5 4 1 5 2 3 4 5 2 6 6 5 4 5 3 5 5 4 4 2 4 2 3 5 5 4 1 6 1 2 4