Arrows in matplotlib using mplot3d

后端 未结 1 917
走了就别回头了
走了就别回头了 2021-02-02 02:04

I am trying to use matplotlib to recreate the diagram on this page: http://books.google.co.uk/books?id=sf9Qn9MS0ykC&pg=PA18

Here is what I have so far:



        
1条回答
  •  一个人的身影
    2021-02-02 02:06

    This code could be well served by some for-loops, but I leave that as as exercise for the reader ;)

    The key change is the shirnkA and shrinkB paramaters in

    arrow_prop_dict = dict(mutation_scale=20, arrowstyle='-|>', color='k', shrinkA=0, shrinkB=0)
    

    enter image description here

    The full code is below:

    import numpy as np
    from matplotlib import pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib.patches import FancyArrowPatch
    from mpl_toolkits.mplot3d import proj3d
    
    class Arrow3D(FancyArrowPatch):
        def __init__(self, xs, ys, zs, *args, **kwargs):
            FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs)
            self._verts3d = xs, ys, zs
    
        def draw(self, renderer):
            xs3d, ys3d, zs3d = self._verts3d
            xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)
            self.set_positions((xs[0],ys[0]),(xs[1],ys[1]))
            FancyArrowPatch.draw(self, renderer)
    
    def Rx(phi):
        return np.array([[1, 0, 0],
                         [0, np.cos(phi), -np.sin(phi)],
                         [0, np.sin(phi), np.cos(phi)]])
    
    def Ry(theta):
        return np.array([[np.cos(theta), 0, np.sin(theta)],
                         [0, 1, 0],
                         [-np.sin(theta), 0, np.cos(theta)]])
    
    def Rz(psi):
        return np.array([[np.cos(psi), -np.sin(psi), 0],
                         [np.sin(psi), np.cos(psi), 0],
                         [0, 0, 1]])
    
    # define origin
    o = np.array([0,0,0])
    
    # define ox0y0z0 axes
    x0 = np.array([1,0,0])
    y0 = np.array([0,1,0])
    z0 = np.array([0,0,1])
    
    # define ox1y1z1 axes
    psi = 20 * np.pi / 180
    x1 = Rz(psi).dot(x0)
    y1 = Rz(psi).dot(y0)
    z1 = Rz(psi).dot(z0)
    
    # define ox2y2z2 axes
    theta = 10 * np.pi / 180
    x2 = Rz(psi).dot(Ry(theta)).dot(x0)
    y2 = Rz(psi).dot(Ry(theta)).dot(y0)
    z2 = Rz(psi).dot(Ry(theta)).dot(z0)
    
    # define ox3y3z3 axes
    phi = 30 * np.pi / 180
    x3 = Rz(psi).dot(Ry(theta)).dot(Rx(phi)).dot(x0)
    y3 = Rz(psi).dot(Ry(theta)).dot(Rx(phi)).dot(y0)
    z3 = Rz(psi).dot(Ry(theta)).dot(Rx(phi)).dot(z0)
    
    # produce figure
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    arrow_prop_dict = dict(mutation_scale=20, arrowstyle='-|>', color='k', shrinkA=0, shrinkB=0)
    # plot ox0y0z0 axes
    a = Arrow3D([o[0], x0[0]], [o[1], x0[1]], [o[2], x0[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], y0[0]], [o[1], y0[1]], [o[2], y0[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], z0[0]], [o[1], z0[1]], [o[2], z0[2]], **arrow_prop_dict)
    ax.add_artist(a)
    
    # plot ox1y1z1 axes
    a = Arrow3D([o[0], x1[0]], [o[1], x1[1]], [o[2], x1[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], y1[0]], [o[1], y1[1]], [o[2], y1[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], z1[0]], [o[1], z1[1]], [o[2], z1[2]], **arrow_prop_dict)
    ax.add_artist(a)
    
    # draw dotted arc in x0y0 plane
    arc = np.arange(-5,116) * np.pi / 180
    p = np.array([np.cos(arc),np.sin(arc),arc * 0])
    ax.plot(p[0,:],p[1,:],p[2,:],'k--')
    
    # mark z0 rotation angles (psi)
    arc = np.linspace(0,psi)
    p = np.array([np.cos(arc),np.sin(arc),arc * 0]) * 0.6
    ax.plot(p[0,:],p[1,:],p[2,:],'k')
    p = np.array([-np.sin(arc),np.cos(arc),arc * 0]) * 0.6
    ax.plot(p[0,:],p[1,:],p[2,:],'k')
    
    # plot ox2y2z2 axes
    a = Arrow3D([o[0], x2[0]], [o[1], x2[1]], [o[2], x2[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], y2[0]], [o[1], y2[1]], [o[2], y2[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], z2[0]], [o[1], z2[1]], [o[2], z2[2]], **arrow_prop_dict)
    ax.add_artist(a)
    
    # draw dotted arc in x1z1 plane
    arc = np.arange(-5,105) * np.pi / 180
    p = np.array([np.sin(arc),arc * 0,np.cos(arc)])
    p = Rz(psi).dot(p)
    ax.plot(p[0,:],p[1,:],p[2,:],'k--')
    
    # mark y1 rotation angles (theta)
    arc = np.linspace(0,theta)
    p = np.array([np.cos(arc),arc * 0,-np.sin(arc)]) * 0.6
    p = Rz(psi).dot(p)
    ax.plot(p[0,:],p[1,:],p[2,:],'k')
    p = np.array([np.sin(arc),arc * 0,np.cos(arc)]) * 0.6
    p = Rz(psi).dot(p)
    ax.plot(p[0,:],p[1,:],p[2,:],'k')
    
    # plot ox3y3z3 axes
    a = Arrow3D([o[0], x3[0]], [o[1], x3[1]], [o[2], x3[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], y3[0]], [o[1], y3[1]], [o[2], y3[2]], **arrow_prop_dict)
    ax.add_artist(a)
    a = Arrow3D([o[0], z3[0]], [o[1], z3[1]], [o[2], z3[2]], **arrow_prop_dict)
    ax.add_artist(a)
    
    # draw dotted arc in y2z2 plane
    arc = np.arange(-5,125) * np.pi / 180
    p = np.array([arc * 0,np.cos(arc),np.sin(arc)])
    p = Rz(psi).dot(Ry(theta)).dot(p)
    ax.plot(p[0,:],p[1,:],p[2,:],'k--')
    
    # mark x2 rotation angles (phi)
    arc = np.linspace(0,phi)
    p = np.array([arc * 0,np.cos(arc),np.sin(arc)]) * 0.6
    p = Rz(psi).dot(Ry(theta)).dot(p)
    ax.plot(p[0,:],p[1,:],p[2,:],'k')
    p = np.array([arc * 0,-np.sin(arc),np.cos(arc)]) * 0.6
    p = Rz(psi).dot(Ry(theta)).dot(p)
    ax.plot(p[0,:],p[1,:],p[2,:],'k')
    
    text_options = {'horizontalalignment': 'center',
                    'verticalalignment': 'center',
                    'fontsize': 14}
    
    # add label for origin
    ax.text(0.0,0.0,-0.05,r'$o$', **text_options)
    
    # add labels for x axes
    ax.text(1.1*x0[0],1.1*x0[1],1.1*x0[2],r'$x_0$', **text_options)
    ax.text(1.1*x1[0],1.1*x1[1],1.1*x1[2],r'$x_1$', **text_options)
    ax.text(1.1*x2[0],1.1*x2[1],1.1*x2[2],r'$x_2, x_3$', **text_options)
    
    # add lables for y axes
    ax.text(1.1*y0[0],1.1*y0[1],1.1*y0[2],r'$y_0$', **text_options)
    ax.text(1.1*y1[0],1.1*y1[1],1.1*y1[2],r'$y_1, y_2$', **text_options)
    ax.text(1.1*y3[0],1.1*y3[1],1.1*y3[2],r'$y_3$', **text_options)
    
    # add lables for z axes
    ax.text(1.1*z0[0],1.1*z0[1],1.1*z0[2],r'$z_0, z_1$', **text_options)
    ax.text(1.1*z2[0],1.1*z2[1],1.1*z2[2],r'$z_2$', **text_options)
    ax.text(1.1*z3[0],1.1*z3[1],1.1*z3[2],r'$z_3$', **text_options)
    
    # add psi angle labels
    m = 0.55 * ((x0 + x1) / 2.0)
    ax.text(m[0], m[1], m[2], r'$\psi$', **text_options)
    m = 0.55 * ((y0 + y1) / 2.0)
    ax.text(m[0], m[1], m[2], r'$\psi$', **text_options)
    
    # add theta angle lables
    m = 0.55 * ((x1 + x2) / 2.0)
    ax.text(m[0], m[1], m[2], r'$\theta$', **text_options)
    m = 0.55 * ((z1 + z2) / 2.0)
    ax.text(m[0], m[1], m[2], r'$\theta$', **text_options)
    
    # add phi angle lables
    m = 0.55 * ((y2 + y3) / 2.0)
    ax.text(m[0], m[1], m[2], r'$\phi$', **text_options)
    m = 0.55 * ((z2 + z3) / 2.0)
    ax.text(m[0], m[1], m[2], r'$\phi$', **text_options)
    
    # show figure
    ax.view_init(elev=-150, azim=60)
    ax.set_axis_off()
    plt.show()
    

    0 讨论(0)
提交回复
热议问题