In R, if we have a data matrix, say a 100 by 10 matrix X, and a 100-elements vector t with possible values (0, 1, 2, 3), we can easily find a submatrix y of X using a simple syn
I would love to see this as sugar. Unfortunately, I am not qualified to implement it though. Here are still a number of different solutions I played with.
First, I had to make some modifications to Gong-Yi Liao code to get this to work (colvec
instead of vec
for tIdx
and Xmat.rows(...
instead of X.rows(...
:
mat Xmat(X.begin(), X.nrow(), X.ncol(), false);
colvec tIdx(T.begin(), T.size(), false);
mat y = Xmat.rows(find(tIdx == 1));
Second, here are three function with benchmarks that all subset matrices based on a logical statement. The functions take arma or rcpp arguments and return values Two are based on Gong-Yi Liao's solution and one is a simple loop-based solution.
n(rows)=100, p(T==1)=0.3
expr min lq median uq max
1 submat_arma(X, T) 5.009 5.3955 5.8250 6.2250 28.320
2 submat_arma2(X, T) 4.859 5.2995 5.6895 6.1685 45.122
3 submat_rcpp(X, T) 5.831 6.3690 6.7465 7.3825 20.876
4 X[T == 1, ] 3.411 3.9380 4.1475 4.5345 27.981
n(rows)=10000, p(T==1)=0.3
expr min lq median uq max
1 submat_arma(X, T) 107.070 113.4000 125.5455 141.3700 1468.539
2 submat_arma2(X, T) 76.179 80.4295 88.2890 100.7525 1153.810
3 submat_rcpp(X, T) 244.242 247.3120 276.6385 309.2710 1934.126
4 X[T == 1, ] 229.884 236.1445 263.5240 289.2370 1876.980
submat.cpp
#include
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
using namespace arma;
// arma in; arma out
// [[Rcpp::export]]
mat submat_arma(arma::mat X, arma::colvec T) {
mat y = X.rows(find(T == 1));
return y;
}
// rcpp in; arma out
// [[Rcpp::export]]
mat submat_arma2(NumericMatrix X, NumericVector T) {
mat Xmat(X.begin(), X.nrow(), X.ncol(), false);
colvec tIdx(T.begin(), T.size(), false);
mat y = Xmat.rows(find(tIdx == 1));
return y;
}
// rcpp in; rcpp out
// [[Rcpp::export]]
NumericMatrix submat_rcpp(NumericMatrix X, LogicalVector condition) {
int n=X.nrow(), k=X.ncol();
NumericMatrix out(sum(condition),k);
for (int i = 0, j = 0; i < n; i++) {
if(condition[i]) {
out(j,_) = X(i,_);
j = j+1;
}
}
return(out);
}
/*** R
library("microbenchmark")
# simulate data
n=100
p=0.3
T=rbinom(n,1,p)
X=as.matrix(cbind(rnorm(n),rnorm(n)))
# compare output
identical(X[T==1,],submat_arma(X,T))
identical(X[T==1,],submat_arma2(X,T))
identical(X[T==1,],submat_rcpp(X,T))
# benchmark
microbenchmark(X[T==1,],submat_arma(X,T),submat_arma2(X,T),submat_rcpp(X,T),times=500)
# increase n
n=10000
p=0.3
T=rbinom(n,1,p)
X=as.matrix(cbind(rnorm(n),rnorm(n)))
# benchmark
microbenchmark(X[T==1,],submat_arma(X,T),submat_arma2(X,T),submat_rcpp(X,T),times=500)
*/