I have a dataframe with 71 columns and 30597 rows. I want to replace all non-nan entries with 1 and the nan values with 0.
Initially I tried for-loop on each value of th
Use notnull with casting boolean to int
by astype:
print ((df.notnull()).astype('int'))
Sample:
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': [np.nan, 4, np.nan], 'b': [1,np.nan,3]})
print (df)
a b
0 NaN 1.0
1 4.0 NaN
2 NaN 3.0
print (df.notnull())
a b
0 False True
1 True False
2 False True
print ((df.notnull()).astype('int'))
a b
0 0 1
1 1 0
2 0 1