Exercise 1.11:
A function
f
is defined by the rule thatf(n) = n
ifn < 3
andf(n) = f(n - 1) + 2f(n - 2)
A function
f
is defined by the rule thatf(n) = n, if n<3
andf(n) = f(n - 1) + 2f(n - 2) + 3f(n - 3), if n > 3
. Write a procedure that computesf
by means of a recursive process.
It is already written:
f(n) = n, (* if *) n < 3
= f(n - 1) + 2f(n - 2) + 3f(n - 3), (* if *) n > 3
Believe it or not, there was once such a language. To write this down in another language is just a matter of syntax. And by the way, the definition as you (mis)quote it has a bug, which is now very apparent and clear.
Write a procedure that computes
f
by means of an iterative process.
Iteration means going forward (there's your explanation!) as opposed to the recursion's going backwards at first:
f(n) = f(n - 1) + 2f(n - 2) + 3f(n - 3)
= a + 2b + 3c
f(n+1) = f(n ) + 2f(n - 1) + 3f(n - 2)
= a' + 2b' + 3c' a' = a+2b+3c, b' = a, c' = b
......
This thus describes the problem's state transitions as
(n, a, b, c) -> (n+1, a+2*b+3*c, a, b)
We could code it as
g (n, a, b, c) = g (n+1, a+2*b+3*c, a, b)
but of course it wouldn't ever stop. So we must instead have
f n = g (2, 2, 1, 0)
where
g (k, a, b, c) = g (k+1, a+2*b+3*c, a, b), (* if *) k < n
g (k, a, b, c) = a, otherwise
and this is already exactly like the code you asked about, up to syntax.
Counting up to n is more natural here, following our paradigm of "going forward", but counting down to 0 as the code you quote does is of course entirely equivalent.
The corner cases and possible off-by-one errors are left out as exercise non-interesting technicalities.