Exercise 1.11:
A function
f
is defined by the rule thatf(n) = n
ifn < 3
andf(n) = f(n - 1) + 2f(n - 2)
I think you are asking how one might discover the algorithm naturally, outside of a 'design pattern'.
It was helpful for me to look at the expansion of the f(n) at each n value:
f(0) = 0 |
f(1) = 1 | all known values
f(2) = 2 |
f(3) = f(2) + 2f(1) + 3f(0)
f(4) = f(3) + 2f(2) + 3f(1)
f(5) = f(4) + 2f(3) + 3f(2)
f(6) = f(5) + 2f(4) + 3f(3)
Looking closer at f(3), we see that we can calculate it immediately from the known values. What do we need to calculate f(4)?
We need to at least calculate f(3) + [the rest]. But as we calculate f(3), we calculate f(2) and f(1) as well, which we happen to need for calculating [the rest] of f(4).
f(3) = f(2) + 2f(1) + 3f(0)
↘ ↘
f(4) = f(3) + 2f(2) + 3f(1)
So, for any number n, I can start by calculating f(3), and reuse the values I use to calculate f(3) to calculate f(4)...and the pattern continues...
f(3) = f(2) + 2f(1) + 3f(0)
↘ ↘
f(4) = f(3) + 2f(2) + 3f(1)
↘ ↘
f(5) = f(4) + 2f(3) + 3f(2)
Since we will reuse them, lets give them a name a, b, c. subscripted with the step we are on, and walk through a calculation of f(5):
Step 1: f(3) = f(2) + 2f(1) + 3f(0) or f(3) = a1 + 2b1 +3c1
where
a1 = f(2) = 2,
b1 = f(1) = 1,
c1 = 0
since f(n) = n for n < 3.
Thus:
f(3) = a1 + 2b1 + 3c1 = 4
Step 2: f(4) = f(3) + 2a1 + 3b1
So:
a2 = f(3) = 4 (calculated above in step 1),
b2 = a1 = f(2) = 2,
c2 = b1 = f(1) = 1
Thus:
f(4) = 4 + 2*2 + 3*1 = 11
Step 3: f(5) = f(4) + 2a2 + 3b2
So:
a3 = f(4) = 11 (calculated above in step 2),
b3 = a2 = f(3) = 4,
c3 = b2 = f(2) = 2
Thus:
f(5) = 11 + 2*4 + 3*2 = 25
Throughout the above calculation we capture state in the previous calculation and pass it to the next step, particularily:
astep = result of step - 1
bstep = astep - 1
cstep = bstep -1
Once I saw this, then coming up with the iterative version was straightforward.