I know that l1 and l2 caches are levels in multi-level cache.
I would like to know where each level cache is placed, and what is the maximum number of cache levels allowed?<
Both of these depend on the CPU. There are CPUs which have no cache at all, there are CPUs which have the L1 cache on die and the L2 cache on a separate die on the same chip or even on a separate chip, or there are CPUs which have both L1 and L2 cache on the same die as the CPU core.
There are multi-core, multi-chip CPUs where each core has its own L1 cache on die, the 4 cores of one multi-core chip share an L2 cache that is on chip, but on a separate die, and the 2 chips share an L3 cache that is on a separate chip, but in the same package. Sometimes, there are also so-called CPU books which contain multiple chip packages, which might or might not have their own shared cache, which would then be an L4 cache.
Of course, multi-core chips don't have to share their L2 cache, they can also have private L2 caches.
And it's not always obvious, what level a certain cache is, or even whether or not a piece of RAM is a cache at all.
For example, on later Intel 80486 processors, there was an L1 cache on the chip and an L2 cache on the motherboard. But then AMD came out with a socket-compatible CPU that had both an L1 and L2 cache on the chip. So, the exact same cache chip on the motherboard was either an L2 or L3 cache, depending on what kind of CPU you used.
On the Cell BE CPU, the SPEs have 256 KiByte of RAM each. Except that this RAM has about the same size and the same speed as a typical L2 cache, and since the SPEs don't have any other caches, you could also view this as a cache. However, caches are normally managed automatically by the CPU, whereas RAM is typically managed by the user program, the language runtime or the OS, not the CPU. So, is this RAM or a cache? It turns out that, in order to achieve best performance, you should really not view this as RAM, but more as a software-controlled cache.