When using multiple threads, shared memory needs to be locked by critical sections. However, using critical sections causes potential deadlocks. How can they be avoided?
One way is by using a non-blocking locking function. As an example, in rust You could use std::sync::Mutex::try_lock
instead of std::sync::Mutex::lock
.
So so if you have this example code:
fn transfer(tx: &Mutex, rx: &Mutex, amount: i32) -> () {
let mut tx = tx.lock().unwrap();
let mut rx = rx.lock().unwrap();
*tx -= amount;
*rx += amount;
}
You could instead do something like this:
fn transfer(tx: &Mutex, rx: &Mutex, amount: i32) -> () {
loop {
// Attempt to lock both mutexes
let mut tx = tx.try_lock();
let mut rx = rx.try_lock();
// If both locks were successfull,
// i.e. if they currently are not
// locked by an other thread
if let Ok(ref mut tx) = tx {
if let Ok(ref mut rx) = rx {
// Perform the operations needed on
// the values inside the mutexes
**tx -= amount;
**rx += amount;
// Exit the loop
break;
}
}
// If at least one of the locks were
// not successful, restart the loop
// and try locking the values again.
// You may also want to sleep the thread
// here for a short period if You think that
// the mutexes might be locked for a while.
}
}