What seemed like a trivial task turned into a real nightmare when I had to read in some data from a PowerPivot model using Python. I believe I\'ve researched this very well over
The problem with getting data out of PowerPivot is that the tabular engine in PowerPivot runs in-process inside Excel and the only way to connect to that engine is to have your code running inside Excel too. (I suspect that it may use shared memory or some other transport, but it's definitely not listening on a TCP port or a named pipe or anything like that which would allow an external process to connect)
We do this in Dax Studio by running a C# VSTO Excel add-in in Excel. However that was only designed to work for testing analytic queries, not for doing bulk data extraction. We marshal the data across from the add-in to the UI using a string variable so the entire dataset must be less than 2Gb or the response gets truncated and you will see an "unrecognizable response" error (the data is serialized into an XMLA rowset which is quite verbose so may see it break when only extracting a few hundred Mb of data)
If you wanted to build a script to automate extracting all the raw data from a model I don't think you will be able to do it with Python as I don't believe you can get the python interpreter running in-process inside Excel. I would look at using a vba macro like this one http://www.powerpivotblog.nl/export-a-table-or-dax-query-from-power-pivot-to-csv-using-vba/
You should find that you can query the model for a list of tables with something like "SELECT * FROM $SYSTEM.DBSCHEMA_TABLES" - you could then loop over each table and extract with a variation of the code in the above link.