How would you mathematically model the distribution of repeated real life performance measurements - \"Real life\" meaning you are not just looping over the code in question, bu
Often when you have a random value that can only be positive, a log-normal distribution is a good way to model it. That is, you take the log of each measurement, and assume that is normally distributed.
If you want, you can consider that to have multiple humps, i.e. to be the sum of two normals having different mean. Those are a bit tricky to estimate the parameters of, because you may have to estimate, for each measurement, its probability of belonging to each hump. That may be more than you want to bother with.
Log-normal distributions are very convenient and well-behaved. For example, you don't deal with its average, you deal with it's geometric mean, which is the same as its median.
BTW, in pharmacometric modeling, log-normal distributions are ubiquitous, modeling such things as blood volume, absorption and elimination rates, body mass, etc.
ADDED: If you want what you call a floating distribution, that's called an empirical or non-parametric distribution. To model that, typically you save the measurements in a sorted array. Then it's easy to pick off the percentiles. For example the median is the "middle number". If you have too many measurements to save, you can go to some kind of binning after you have enough measurements to get the general shape.
ADDED: There's an easy way to tell if a distribution is normal (or log-normal). Take the logs of the measurements and put them in a sorted array. Then generate a QQ plot (quantile-quantile). To do that, generate as many normal random numbers as you have samples, and sort them. Then just plot the points, where X is the normal distribution point, and Y is the log-sample point. The results should be a straight line. (A really simple way to generate a normal random number is to just add together 12 uniform random numbers in the range +/- 0.5.)