I like to use a progress bar while running slow for
loops. This could be done easily with several helpers, but I do like the tkProgressBar
from tcl
My solution is very similar to Andrie's except it uses base R, and I second his comments on the need to wrap what you want to do in a function and the subsequent need to use <<-
to modify stuff in a higher environment.
Here's a function that does nothing, and does it slowly:
myfun <- function(x, text) {
Sys.sleep(0.2)
cat("running ",x, " with text of '", text, "'\n", sep="")
x
}
Here's my forp
function. Note that regardless of what we're actually looping over, it instead loops over the sequence 1:n
instead and get the right term of what we actually want within the loop. plyr
does this automatically.
library(tcltk)
forp <- function(x, FUN, ...) {
n <- length(x)
pb <- tkProgressBar(title = "Working hard:", min = 0, max = n, width = 300)
out <- vector("list", n)
for (i in seq_len(n)) {
out[[i]] <- FUN(x[i], ...)
setTkProgressBar(pb, i, label=paste( round(i/n*100, 0), "% ready!"))
}
close(pb)
invisible(out)
}
And here's how both for
and forp
might be used, if all we want to do is call myfun
:
x <- LETTERS[1:5]
for(xi in x) myfun(xi, "hi")
forp(x, myfun, text="hi")
And here's how they might be used if we want to modify something along the way.
out <- "result:"
for(xi in x) {
out <- paste(out, myfun(xi, "hi"))
}
out <- "result:"
forp(x, function(xi) {
out <<- paste(out, myfun(xi, "hi"))
})
For both versions the result is
> out
[1] "result: A B C D E"
EDIT: After seeing your (daroczig's) solution, I have another idea that might not be quite so unwieldy, which is to evaluate the expression in the parent frame. This makes it easier to allow for values other than i
(now specified with the index
argument), though as of right now I don't think it handles a function as the expression, though just to drop in instead a for loop that shouldn't matter.
forp2 <- function(index, x, expr) {
expr <- substitute(expr)
n <- length(x)
pb <- tkProgressBar(title = "Working hard:", min = 0, max = n, width = 300)
for (i in seq_len(n)) {
assign(index, x[i], envir=parent.frame())
eval(expr, envir=parent.frame())
setTkProgressBar(pb, i, label=paste( round(i/n*100, 0), "% ready!"))
}
close(pb)
}
The code to run my example from above would be
out <- "result:"
forp2("xi", LETTERS[1:5], {
out <- paste(out, myfun(xi, "hi"))
})
and the result is the same.
ANOTHER EDIT, based on the additional information in your bounty offer:
The syntax forX(1:1000) %doX$ { expression }
is possible; that's what the foreach
package does. I'm too lazy right now to build it off of your solution, but building off mine, it could look like this:
`%doX%` <- function(index, expr) {
x <- index[[1]]
index <- names(index)
expr <- substitute(expr)
n <- length(x)
pb <- tkProgressBar(title = "Working hard:", min = 0, max = n, width = 300)
for (i in seq_len(n)) {
assign(index, x[i], envir=parent.frame())
eval(expr, envir=parent.frame())
setTkProgressBar(pb, i, label=paste( round(i/n*100, 0), "% ready!"))
}
close(pb)
invisible(out)
}
forX <- function(...) {
a <- list(...)
if(length(a)!=1) {
stop("index must have only one element")
}
a
}
Then the use syntax is this, and the result is the same as above.
out <- "result:"
forX(xi=LETTERS[1:5]) %doX% {
out <- paste(out, myfun(xi, "hi"))
}
out