Some cryptosystems based on NP-hard problems have been proposed (such as the Merkle-Hellman cryptosystem based on the subset-sum problem, and the Naccache-Stern knapsack cryptosystem based on the knapsack problem), but they have all been broken. Why is this? Lecture 16 of Scott Aaronson's Great Ideas in Theoretical Computer Science says something about this, which I think you should take as definitive. What it says is the following:
Ideally, we would like to construct a [Cryptographic Pseudorandom Generator] or cryptosystem whose security was based on an NP-complete problem. Unfortunately, NP-complete problems are always about the worst case. In cryptography, this would translate to a statement like “there exists a message that’s hard to decode”, which is not a good guarantee for a cryptographic system! A message should be hard to decrypt with overwhelming probability. Despite decades of effort, no way has yet been discovered to relate worst case to average case for NP-complete problems. And this is why, if we want computationally-secure cryptosystems, we need to make stronger assumptions than P≠NP.