Multiple imshow-subplots, each with colorbar

后端 未结 1 2029
时光取名叫无心
时光取名叫无心 2021-01-31 17:48

I want to have a figure consisting of, let\'s say, four subplots. Two of them are usual line-plots, two of them imshow-images.

I can format the imshow-images to proper p

1条回答
  •  清酒与你
    2021-01-31 18:07

    You can make use of matplotlibs object oriented interface rather than the state-machine interace in order to get better control over each axes. Also, to get control over the height/width of the colorbar you can make use of the AxesGrid toolkit of matplotlib.

    For example:

    import matplotlib.pyplot as plt
    import numpy as np
    from mpl_toolkits.axes_grid1 import make_axes_locatable
    from matplotlib.colors import LogNorm
    from matplotlib.ticker import MultipleLocator
    
    s = {'t': 1,
         'x': [1, 2, 3, 4, 5, 6, 7, 8],
         'T': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
         'D': [0.3, 0.5, 0.2, 0.3, 0.5, 0.5, 0.3, 0.4]}
    
    width = 40
    
    tot = np.repeat(s['D'],width).reshape(len(s['D']), width)
    tot2 = np.repeat(s['T'],width).reshape(len(s['D']), width)
    
    fig, (ax1, ax2, ax3, ax4) = plt.subplots(1,4)
    
    fig.suptitle('Title of figure', fontsize=20)
    
    # Line plots
    ax1.set_title('Title of ax1')
    ax1.plot(s['x'], s['T'])
    ax1.set_ylim(0,1)
    
    ax2.set_title('Title of ax2')
    ax2.plot(s['x'], s['D'])
    # Set locations of ticks on y-axis (at every multiple of 0.25)
    ax2.yaxis.set_major_locator(MultipleLocator(0.25))
    # Set locations of ticks on x-axis (at every multiple of 2)
    ax2.xaxis.set_major_locator(MultipleLocator(2))
    ax2.set_ylim(0,1)
    
    ax3.set_title('Title of ax3')
    # Display image, `aspect='auto'` makes it fill the whole `axes` (ax3)
    im3 = ax3.imshow(tot, norm=LogNorm(vmin=0.001, vmax=1), aspect='auto')
    # Create divider for existing axes instance
    divider3 = make_axes_locatable(ax3)
    # Append axes to the right of ax3, with 20% width of ax3
    cax3 = divider3.append_axes("right", size="20%", pad=0.05)
    # Create colorbar in the appended axes
    # Tick locations can be set with the kwarg `ticks`
    # and the format of the ticklabels with kwarg `format`
    cbar3 = plt.colorbar(im3, cax=cax3, ticks=MultipleLocator(0.2), format="%.2f")
    # Remove xticks from ax3
    ax3.xaxis.set_visible(False)
    # Manually set ticklocations
    ax3.set_yticks([0.0, 2.5, 3.14, 4.0, 5.2, 7.0])
    
    ax4.set_title('Title of ax4')
    im4 = ax4.imshow(tot2, norm=LogNorm(vmin=0.001, vmax=1), aspect='auto')
    divider4 = make_axes_locatable(ax4)
    cax4 = divider4.append_axes("right", size="20%", pad=0.05)
    cbar4 = plt.colorbar(im4, cax=cax4)
    ax4.xaxis.set_visible(False)
    # Manually set ticklabels (not ticklocations, they remain unchanged)
    ax4.set_yticklabels([0, 50, 30, 'foo', 'bar', 'baz'])
    
    plt.tight_layout()
    # Make space for title
    plt.subplots_adjust(top=0.85)
    plt.show()
    

    enter image description here


    You can change the locations and labels of the ticks on either axis with the set_ticks and set_ticklabels methods as in the example above.


    As for what the make_axes_locatable function does, from the matplotlib site about the AxesGrid toolkit:

    The axes_divider module provides a helper function make_axes_locatable, which can be useful. It takes a existing axes instance and create a divider for it.

    ax = subplot(1,1,1)
    divider = make_axes_locatable(ax)
    

    make_axes_locatable returns an instance of the AxesLocator class, derived from the Locator. It provides append_axes method that creates a new axes on the given side of (“top”, “right”, “bottom” and “left”) of the original axes.

    0 讨论(0)
提交回复
热议问题