So I was assigned the problem of writing a 5x5x5 tic-tac-toe player using a genetic algorithm. My approach was to start off with 3x3, get that working, and then extend to 5x5,
My knowledge of GA is pretty limited, but in modeling board configurations, aren't you asking the wrong question? Your task isn't to enumerate all the possible winning configurations -- what you're trying to do is to find a sequence of moves that leads to a winning configuration. Maybe the population you should be looking at isn't a set of boards, but a set of move sequences.
Edit: I wasn't thinking so much of starting from a particular board as starting from an empty board. It's obvious on a 3x3 board that move sequences starting with (1,1) work out best for X. The important thing isn't that the final board has an X in the middle, it's that the X was placed in the middle first. If there's one or more best first moves for X, maybe there's also a best second, third, or fourth move for X, too? After several rounds of fitness testing and recombining, will we find that X's second move is usually the same, or is one of a small set of values? And what about the third move?
This isn't minimax because you're not looking for the best moves one at a time based on the previous state of the board, you're looking for all the best moves at the same time, hoping to converge on a winning strategy.
I know this doesn't solve your problem, but if the idea is to evolve a winning strategy then it seems natural that you'd want to look at sequences of moves rather than board states.