Find the shortest path from source to destination in a directed graph with positive and negative edges, such that at no point in the path the sum of edges coming
As Kaganar notes, we basically have to make some assumption in order to get a polytime algorithm. Let's assume that the edge lengths are in {-1, 1}. Given the graph, construct a weighted context-free grammar that recognizes valid paths from source to destination with weight equal to the number of excess 1 edges (it generalizes the grammar for balanced parentheses). Compute, for each nonterminal, the cost of the cheapest production by initializing everything to infinity or 1, depending on whether there is a production whose RHS has no nonterminal, and then relaxing n - 1 times, where n is the number of nonterminals.