I have a parquet table with one of the columns being
, array
>
Can run queries against this table in
I'll give a Python-based answer since that's what I'm using. I think Scala has something similar.
The explode
function was added in Spark 1.4.0 to handle nested arrays in DataFrames, according to the Python API docs.
Create a test dataframe:
from pyspark.sql import Row
df = sqlContext.createDataFrame([Row(a=1, intlist=[1,2,3]), Row(a=2, intlist=[4,5,6])])
df.show()
## +-+--------------------+
## |a| intlist|
## +-+--------------------+
## |1|ArrayBuffer(1, 2, 3)|
## |2|ArrayBuffer(4, 5, 6)|
## +-+--------------------+
Use explode
to flatten the list column:
from pyspark.sql.functions import explode
df.select(df.a, explode(df.intlist)).show()
## +-+---+
## |a|_c0|
## +-+---+
## |1| 1|
## |1| 2|
## |1| 3|
## |2| 4|
## |2| 5|
## |2| 6|
## +-+---+