The following code is considered invalid by the compiler:
class Foo {
void foo(String foo) { ... }
}
class Bar extends Foo {
@Override
void foo(Obje
(A rewrite, from a different angle ... my original answer contained an error. :( )
why can't the parameter in the subtype (Bar) be a supertype of the parameter in the supertype (Foo).
I believe that technically it could, and it wouldn't break ancestor contracts following type substition (Liskov Substitution Principle).
From my analysis below, I surmise/guess the rationale for not allowing your scenario:
Compiler Requirements for Method Override - JLS 7
The compiler's required to act accordancing to your experience. 8.4 Method Declarations:
A method in a subclass can override a method in an ancestor class iff:
the return type is type-substitutable for the return type in the ancestor class, i.e. the same type or narrower (8.4.8.3)
Note: subsignature does not mean the overriding method uses subtypes of the overridden method. The overriding method is said to have a subsignature of the overridden method when the overriding method has exactly the same type signature except that generic types and the corresponding raw types are considered equivalent.
Compiler v Runtime Processing for Method Matching & Invocation
There's a performance hit matching method signatures via polymorphic type matching. By restricting override method signatures to exact match of ancestor, the JLS moves much of this processing to compile time. 15.12 Method Invocation Expressions - summarised:
Determine Class or Interface to Search (Compile-Time Determination)
Determine Method Signature (Compile-Time Determination)
Check: Is the Chosen Method Appropriate? (Compile-Time Determination)
Evaluation of Method Invocation (Runtime Determination)
Performance Hit
The breakdown, in terms of text in the JLS:
Step 1: 5% Step 2: 60% Step 3: 5% Step 4: 30%
Not only is Step 2 volumous in text, it's surprisingly complex. It has complex conditions and many expensive test conditions/searches. It's advantageous to maximise the compiler's execution of the more complex and slower processing here. If this was done at runtime, there would be a drag on performance, because it would occur for each method invocation.
Step 4 still has significant processing, but it is as streamlined as possible. Reading through 15.12.4, it contains no processing steps that could be moved to compile time, without forcing the runtime type to exactly match the compile-time type. Not only that, but it does a simple exact match on the method signature, rather than a complex "ancestor type match"