import pandas as pd
df = pd.read_csv(\'https://query.data.world/s/Hfu_PsEuD1Z_yJHmGaxWTxvkz7W_b0\')
percent= 100*(len(df.loc[:,df.isnull().sum(axis=0)>=1 ].index) / l
By this following code, you can get the corresponding percentage values from every columns. Just switch the name train_data with df, in case of yours.
Input:
In [1]:
all_data_na = (train_data.isnull().sum() / len(train_data)) * 100
all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_values(ascending=False)[:30]
missing_data = pd.DataFrame({'Missing Ratio' :all_data_na})
missing_data.head(20)
Output :
Out[1]:
Missing Ratio
left_eyebrow_outer_end_x 68.435239
left_eyebrow_outer_end_y 68.435239
right_eyebrow_outer_end_y 68.279189
right_eyebrow_outer_end_x 68.279189
left_eye_outer_corner_x 67.839410
left_eye_outer_corner_y 67.839410
right_eye_inner_corner_x 67.825223
right_eye_inner_corner_y 67.825223
right_eye_outer_corner_x 67.825223
right_eye_outer_corner_y 67.825223
mouth_left_corner_y 67.811037
mouth_left_corner_x 67.811037
left_eyebrow_inner_end_x 67.796851
left_eyebrow_inner_end_y 67.796851
right_eyebrow_inner_end_y 67.796851
mouth_right_corner_x 67.796851
mouth_right_corner_y 67.796851
right_eyebrow_inner_end_x 67.796851
left_eye_inner_corner_x 67.782664
left_eye_inner_corner_y 67.782664