I came across these 2 papers which combined collaborative filtering (Matrix factorization) and Topic modelling (LDA) to recommend users similar articles/posts based on topic ter
This should get you started (although not sure why this hasn't been posted yet): https://github.com/arongdari/python-topic-model
More specifically: https://github.com/arongdari/python-topic-model/blob/master/ptm/collabotm.py
class CollaborativeTopicModel:
"""
Wang, Chong, and David M. Blei. "Collaborative topic
modeling for recommending scientific articles."
Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2011.
Attributes
----------
n_item: int
number of items
n_user: int
number of users
R: ndarray, shape (n_user, n_item)
user x item rating matrix
"""
Looks nice and straightforward. I still suggest at least looking at gensim
. Radim has done a fantastic job of optimizing that software very well.