How to evaluate a pretrained model in Tensorflow object detection api

后端 未结 3 542
一生所求
一生所求 2021-01-31 06:45

Trying work with the recently released Tensorflow Object Detection API, and was wondering how I could evaluate one of the pretrained models they provided in their model zoo? ex.

3条回答
  •  终归单人心
    2021-01-31 07:29

    Try:

    python eval.py --logtostderr --checkpoint_dir=training --eval_dir=path/to/eval_dir --pipeline_config_path=path/to/pretrained_model.config
    

    For example:

    python eval.py --logtostderr --checkpoint_dir=training --eval_dir=images/val \
      --pipelineline_config_path=training/faster_rcnn_inception_v2.config
    

    Note:

    The training dir contains all your training checkpoints. During training Tensorflow generates a checkpoint file inside this directory with all your checkpoint metadata in it so you do not need to create another one. If you wish to evaluate your trained custom model after generating your inference graph then ensure your change your original pretrained_model/model.chpt to your new_trained_model/model.ckpt in the .config you used for training. You should get a similar output:

    Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.457
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.729
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.502
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.122
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.297
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.659
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.398
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.559
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.590
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.236
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.486
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.746
    INFO:tensorflow:Writing metrics to tf summary.
    INFO:tensorflow:DetectionBoxes_Precision/mAP: 0.456758
    INFO:tensorflow:DetectionBoxes_Precision/mAP (large): 0.659280
    INFO:tensorflow:DetectionBoxes_Precision/mAP (medium): 0.296693
    INFO:tensorflow:DetectionBoxes_Precision/mAP (small): 0.122108
    INFO:tensorflow:DetectionBoxes_Precision/mAP@.50IOU: 0.728587
    INFO:tensorflow:DetectionBoxes_Precision/mAP@.75IOU: 0.502194
    INFO:tensorflow:DetectionBoxes_Recall/AR@1: 0.397509
    INFO:tensorflow:DetectionBoxes_Recall/AR@10: 0.558966
    INFO:tensorflow:DetectionBoxes_Recall/AR@100: 0.590182
    INFO:tensorflow:DetectionBoxes_Recall/AR@100 (large): 0.745691
    INFO:tensorflow:DetectionBoxes_Recall/AR@100 (medium): 0.485964
    INFO:tensorflow:DetectionBoxes_Recall/AR@100 (small): 0.236275
    INFO:tensorflow:Losses/Loss/BoxClassifierLoss/classification_loss: 0.234645
    INFO:tensorflow:Losses/Loss/BoxClassifierLoss/localization_loss: 0.139109
    INFO:tensorflow:Losses/Loss/RPNLoss/localization_loss: 0.603733
    INFO:tensorflow:Losses/Loss/RPNLoss/objectness_loss: 0.206419
    

提交回复
热议问题