I took discrete math (in which I learned about master theorem, Big Theta/Omega/O) a while ago and I seem to have forgotten the difference between O(logn) and O(2^n) (not in the
To my understanding, the mistake in your reasoning is that using a recursive implementation to evaluate f(n)
where f
denotes the Fibonacci sequence, the input size is reduced by a factor of 2 (or some other factor), which is not the case. Each call (except for the 'base cases' 0 and 1) uses exactly 2 recursive calls, as there is no possibility to re-use previously calculated values. In the light of the presentation of the master theorem on Wikipedia, the recurrence
f(n) = f (n-1) + f(n-2)
is a case for which the master theorem cannot be applied.