I have a standard tensorflow Estimator with some model and want to run it on multiple GPUs instead of just one. How can this be done using data parallelism?
I searched
I think tf.contrib.estimator.replicate_model_fn is a cleaner solution. The following is from tf.contrib.estimator.replicate_model_fn documentation,
...
def model_fn(...): # See `model_fn` in `Estimator`.
loss = ...
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)
if mode == tf.estimator.ModeKeys.TRAIN:
# See the section below on `EstimatorSpec.train_op`.
return EstimatorSpec(mode=mode, loss=loss,
train_op=optimizer.minimize(loss))
# No change for `ModeKeys.EVAL` or `ModeKeys.PREDICT`.
return EstimatorSpec(...)
...
classifier = tf.estimator.Estimator(
model_fn=tf.contrib.estimator.replicate_model_fn(model_fn))
What you need to do is to wrap optimizer with tf.contrib.estimator.TowerOptimize
and model_fn()
with tf.contrib.estimator.replicate_model_fn()
.
I followed the description and make an TPU squeezenet model work on a machine with 4 GPUs. My modifications here.