I\'ve coded up the 0-1 Knapsack problem in Haskell. I\'m fairly proud about the laziness and level of generality achieved so far.
I start by providing functions for crea
To memoize functions, I recommend a library like Luke Palmer's memo combinators. The library uses tries, which are unbounded and have O(key size) lookup. (In general, you can't do better than O(key size) lookup because you always have to touch every bit of the key.)
knapsack :: (Int,Int) -> Solution
knapsack = memo f
where
memo = pair integral integral
f (i,j) = ... knapsack (i-b,j) ...
Internally, the integral
combinator probably builds an infinite data structure
data IntTrie a = Branch IntTrie a IntTrie
integral f = \n -> lookup n table
where
table = Branch (\n -> f (2*n)) (f 0) (\n -> f (2*n+1))
Lookup works like this:
lookup 0 (Branch l a r) = a
lookup n (Branch l a r) = if even n then lookup n2 l else lookup n2 r
where n2 = n `div` 2
There are other ways to build infinite tries, but this one is popular.