Least Frequently Used (LFU) is a type of cache algorithm used to manage memory within a computer. The standard characteristics of this method involve the system keeping track of
Many implementations I have seen have runtime complexity O(log(n))
. This means, when the cache size is n
, the time needed to insert/remove an element into/from chache is logarithmic. Such implementations use usually a min heap
to maintain usage frequencies of elements. The root of the heap contains the element with lowest frequency, and can be accessed in O(1)
time. But to maintain the heap property we have to move an element, every time it is used (and frequency is incremented) inside of the heap, to place it into proper position, or when we have to insert new element into the cache (and so put it into the heap).
But the runtime complexity can be reduced to O(1)
, when we maintain a hashmap
(Java) or unordered_map
(C++) with the element as key. Additinally we need two sorts of lists, frequency list
and elements lists
. The elements lists
contain elements that have same frequency, and the frequency list
contain the element lists
.
frequency list
1 3 6 7
a k y x
c l z
m n
Here in the example we see the frequency list
that has 4 elements (4 elements lists
). The element list 1
contains elements (a,c,m)
, the elements list 3
contains elements (k, l, n)
etc.
Now, when we use say element y
, we have to increment its frequency and put it in the next list. Because the elements list with frequency 6 becomes empty, we delete it. The result is:
frequency list
1 3 7
a k y
c l x
m n z
We place the element y in the begin of the elements list
7. When we have to remove elements from the list later, we will start from the end (first z
, then x
and then y
).
Now, when we use element n
, we have to increment its frequency and put it into the new list, with frequencies 4:
frequency list
1 3 4 7
a k n y
c l x
m z
I hope the idea is clear. I provide now my C++ implementation of the LFU cache, and will add later a Java implementation.
The class has just 2 public methods, void set(key k, value v)
and bool get(key k, value &v)
. In the get method the value to retrieve will be set per reference when the element is found, in this case the method returns true. When the element is not found, the method returns false.
#include
#include
using namespace std;
typedef unsigned uint;
template
struct Entry
{
K key;
V value;
};
template
class LFUCache
{
typedef typename list> ElementList;
typedef typename list > FrequencyList;
private:
unordered_map > cacheMap;
FrequencyList elements;
uint maxSize;
uint curSize;
void incrementFrequency(pair p) {
if (p.first == prev(elements.end())) {
//frequency list contains single list with some frequency, create new list with incremented frequency (p.first->first + 1)
elements.push_back({ p.first->first + 1, { {p.second->key, p.second->value} } });
// erase and insert the key with new iterator pair
cacheMap[p.second->key] = { prev(elements.end()), prev(elements.end())->second.begin() };
}
else {
// there exist element(s) with higher frequency
auto pos = next(p.first);
if (p.first->first + 1 == pos->first)
// same frequency in the next list, add the element in the begin
pos->second.push_front({ p.second->key, p.second->value });
else
// insert new list before next list
pos = elements.insert(pos, { p.first->first + 1 , {{p.second->key, p.second->value}} });
// update cachMap iterators
cacheMap[p.second->key] = { pos, pos->second.begin() };
}
// if element list with old frequency contained this singe element, erase the list from frequency list
if (p.first->second.size() == 1)
elements.erase(p.first);
else
// erase only the element with updated frequency from the old list
p.first->second.erase(p.second);
}
void eraseOldElement() {
if (elements.size() > 0) {
auto key = prev(elements.begin()->second.end())->key;
if (elements.begin()->second.size() < 2)
elements.erase(elements.begin());
else
elements.begin()->second.erase(prev(elements.begin()->second.end()));
cacheMap.erase(key);
curSize--;
}
}
public:
LFUCache(uint size) {
if (size > 0)
maxSize = size;
else
maxSize = 10;
curSize = 0;
}
void set(K key, V value) {
auto entry = cacheMap.find(key);
if (entry == cacheMap.end()) {
if (curSize == maxSize)
eraseOldElement();
if (elements.begin() == elements.end()) {
elements.push_front({ 1, { {key, value} } });
}
else if (elements.begin()->first == 1) {
elements.begin()->second.push_front({ key,value });
}
else {
elements.push_front({ 1, { {key, value} } });
}
cacheMap.insert({ key, {elements.begin(), elements.begin()->second.begin()} });
curSize++;
}
else {
entry->second.second->value = value;
incrementFrequency(entry->second);
}
}
bool get(K key, V &value) {
auto entry = cacheMap.find(key);
if (entry == cacheMap.end())
return false;
value = entry->second.second->value;
incrementFrequency(entry->second);
return true;
}
};
Here are examples of usage:
int main()
{
LFUCachecache(3); // cache of size 3
cache.set(1, 1);
cache.set(2, 2);
cache.set(3, 3);
cache.set(2, 4);
rc = cache.get(1, r);
assert(rc);
assert(r == 1);
// evict old element, in this case 3
cache.set(4, 5);
rc = cache.get(3, r);
assert(!rc);
rc = cache.get(4, r);
assert(rc);
assert(r == 5);
LFUCachecache2(2);
cache2.set(1, "one");
cache2.set(2, "two");
string val;
rc = cache2.get(1, val);
if (rc)
assert(val == "one");
else
assert(false);
cache2.set(3, "three"); // evict 2
rc = cache2.get(2, val);
assert(rc == false);
rc = cache2.get(3, val);
assert(rc);
assert(val == "three");
}