I saw that Fast Minimum Storage Ray/Triangle Intersection by Moller and Trumbore is frequently recommended.
The thing is, I don\'t mind pre-computing and storing any amo
I have done a lot of benchmarks, and I can confidently say that the fastest (published) method is the one invented by Havel and Herout and presented in their paper Yet Faster Ray-Triangle Intersection (Using SSE4). Even without using SSE it is about twice as fast as Möller and Trumbore's algorithm.
My C implementation of Havel-Herout:
typedef struct {
vec3 n0; float d0;
vec3 n1; float d1;
vec3 n2; float d2;
} isect_hh_data;
void
isect_hh_pre(vec3 v0, vec3 v1, vec3 v2, isect_hh_data *D) {
vec3 e1 = v3_sub(v1, v0);
vec3 e2 = v3_sub(v2, v0);
D->n0 = v3_cross(e1, e2);
D->d0 = v3_dot(D->n0, v0);
float inv_denom = 1 / v3_dot(D->n0, D->n0);
D->n1 = v3_scale(v3_cross(e2, D->n0), inv_denom);
D->d1 = -v3_dot(D->n1, v0);
D->n2 = v3_scale(v3_cross(D->n0, e1), inv_denom);
D->d2 = -v3_dot(D->n2, v0);
}
inline bool
isect_hh(vec3 o, vec3 d, float *t, vec2 *uv, isect_hh_data *D) {
float det = v3_dot(D->n0, d);
float dett = D->d0 - v3_dot(o, D->n0);
vec3 wr = v3_add(v3_scale(o, det), v3_scale(d, dett));
uv->x = v3_dot(wr, D->n1) + det * D->d1;
uv->y = v3_dot(wr, D->n2) + det * D->d2;
float tmpdet0 = det - uv->x - uv->y;
int pdet0 = ((int_or_float)tmpdet0).i;
int pdetu = ((int_or_float)uv->x).i;
int pdetv = ((int_or_float)uv->y).i;
pdet0 = pdet0 ^ pdetu;
pdet0 = pdet0 | (pdetu ^ pdetv);
if (pdet0 & 0x80000000)
return false;
float rdet = 1 / det;
uv->x *= rdet;
uv->y *= rdet;
*t = dett * rdet;
return *t >= ISECT_NEAR && *t <= ISECT_FAR;
}