When I was learning tensorflow, one basic concept of tensorflow was computational graphs, and the graphs was said to be static. And I found in Pytorch, the graphs was said to be
Both TensorFlow and PyTorch allow specifying new computations at any point in time. However, TensorFlow has a "compilation" steps which incurs performance penalty every time you modify the graph. So TensorFlow optimal performance is achieved when you specify the computation once, and then flow new data through the same sequence of computations.
It's similar to interpreters vs. compilers -- the compilation step makes things faster, but also discourages people from modifying the program too often.
To make things concrete, when you modify the graph in TensorFlow (by appending new computations using regular API, or removing some computation using tf.contrib.graph_editor), this line is triggered in session.py. It will serialize the graph, and then the underlying runtime will rerun some optimizations which can take extra time, perhaps 200usec. In contrast, running an op in previously defined graph, or in numpy/PyTorch can be as low as 1 usec.