monads are described as the haskell solution to deal with IO. I was wondering if there were other ways to deal with IO in pure functional language.
If by "pure" you mean "referentially transparent", that is, that an applied function is freely interchangeable with its evaluated result (and therefore that calling a function with the same arguments has the same result every time), any concept of stateful IO is pretty much excluded by definition.
There are two rough strategies that I'm aware of:
Let a function do IO, but make sure that it can never be called twice with the exact same arguments; this side-steps the issue by letting the functions be trivially "referentially transparent".
Treat the entire program as a single pure function taking "all input received" as an argument and returning "all output produced", with both represented by some form of lazy stream to allow interactivity.
There are a variety of ways to implement both approaches, as well as some degree of overlap--e.g., in the second case, functions operating on the I/O streams are unlikely to be called twice with the same part of the stream. Which way of looking at it makes more sense depends on what kind of support the language gives you.
In Haskell, IO
is a type of monad that automatically threads sequential state through the code (similar to the functionally pure State
monad), such that, conceptually, each call to an otherwise impure function gets a different value of the implicit "state of the outside world".
The other popular approach I'm aware of uses something like linear types to a similar end; insuring that impure functions never get the same arguments twice by having values that can't be copied or duplicated, so that old values of the "state of the outside world" can't be kept around and reused.