I am using Google Data Flow to implement an ETL data ware house solution.
Looking into google cloud offering, it seems DataProc can also do the same thing.
It
Cloud Dataproc and Cloud Dataflow can both be used for data processing, and there’s overlap in their batch and streaming capabilities. You can decide which product is a better fit for your environment.
Cloud Dataproc is good for environments dependent on specific Apache big data components: - Tools/packages - Pipelines - Skill sets of existing resources
Cloud Dataflow is typically the preferred option for green field environments: - Less operational overhead - Unified approach to development of batch or streaming pipelines - Uses Apache Beam - Supports pipeline portability across Cloud Dataflow, Apache Spark, and Apache Flink as runtimes.
See more details here https://cloud.google.com/dataproc/
Pricing comparision:
DataProc
Dataflow
If you want to calculate and compare cost of more GCP resources, please refer this url https://cloud.google.com/products/calculator/