Yes, Cloud Dataflow and Cloud Dataproc can both be used to implement ETL data warehousing solutions.
An overview of why each of these products exist can be found in the Google Cloud Platform Big Data Solutions Articles
Quick takeaways:
- Cloud Dataproc provides you with a Hadoop cluster, on GCP, and access to Hadoop-ecosystem tools (e.g. Apache Pig, Hive, and Spark); this has strong appeal if you are already familiar with Hadoop tools and have Hadoop jobs
- Cloud Dataflow provides you with a place to run Apache Beam based jobs, on GCP, and you do not need to address common aspects of running jobs on a cluster (e.g. Balancing work, or Scaling the number of workers for a job; by default, this is automatically managed for you, and applies to both batch and streaming) -- this can be very time consuming on other systems
- Apache Beam is an important consideration; Beam jobs are intended to be portable across "runners," which include Cloud Dataflow, and enable you to focus on your logical computation, rather than how a "runner" works -- In comparison, when authoring a Spark job, your code is bound to the runner, Spark, and how that runner works
- Cloud Dataflow also offers the ability to create jobs based on "templates," which can help simplify common tasks where the differences are parameter values