I want to export python scikit-learn models into PMML.
What python package is best suited?
I read about Augustus, but I was not able to find any example using
Nyoka is a python library having support for Scikit-learn
, XGBoost
, LightGBM
, Keras
and Statsmodels
.
Besides about 500 Python classes which each cover a PMML tag and all constructor parameters/attributes as defined in the standard, Nyoka also provides an increasing number of convenience classes and functions that make the Data Scientist’s life easier for example by reading or writing any PMML file in one line of code from within your favorite Python environment.
It can be installed from PyPi using :
pip install nyoka
import pandas as pd
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, Imputer
from sklearn_pandas import DataFrameMapper
from sklearn.ensemble import RandomForestClassifier
iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data, columns=iris.feature_names)
irisd['Species'] = iris.target
features = irisd.columns.drop('Species')
target = 'Species'
pipeline_obj = Pipeline([
("mapping", DataFrameMapper([
(['sepal length (cm)', 'sepal width (cm)'], StandardScaler()) ,
(['petal length (cm)', 'petal width (cm)'], Imputer())
])),
("rfc", RandomForestClassifier(n_estimators = 100))
])
pipeline_obj.fit(irisd[features], irisd[target])
from nyoka import skl_to_pmml
skl_to_pmml(pipeline_obj, features, target, "rf_pmml.pmml")
from keras import applications
from keras.layers import Flatten, Dense
from keras.models import Model
model = applications.MobileNet(weights='imagenet', include_top=False,input_shape = (224, 224,3))
activType='sigmoid'
x = model.output
x = Flatten()(x)
x = Dense(1024, activation="relu")(x)
predictions = Dense(2, activation=activType)(x)
model_final = Model(inputs =model.input, outputs = predictions,name='predictions')
from nyoka import KerasToPmml
cnn_pmml = KerasToPmml(model_final,dataSet='image',predictedClasses=['cats','dogs'])
cnn_pmml.export(open('2classMBNet.pmml', "w"), 0)
More examples can be found in Nyoka's Github Page .