Is the monadic IO construct in Haskell just a convention or is there is a implementation reason for it?
Could you not just FFI into libc.so instead to do your IO, and
Could you just FFI into libc.so instead to do IO and skip the IO Monad thing?
Taking from https://en.wikibooks.org/wiki/Haskell/FFI#Impure_C_Functions, if you declare an FFI function as pure (so, with no reference to IO), then
GHC sees no point in calculating twice the result of a pure function
which means the the result of the function call is effectively cached. For example, a program where a foreign impure pseudo-random number generator is declared to return a CUInt
{-# LANGUAGE ForeignFunctionInterface #-}
import Foreign
import Foreign.C.Types
foreign import ccall unsafe "stdlib.h rand"
c_rand :: CUInt
main = putStrLn (show c_rand) >> putStrLn (show c_rand)
returns the same thing every call, at least on my compiler/system:
16807
16807
If we change the declaration to return a IO CUInt
{-# LANGUAGE ForeignFunctionInterface #-}
import Foreign
import Foreign.C.Types
foreign import ccall unsafe "stdlib.h rand"
c_rand :: IO CUInt
main = c_rand >>= putStrLn . show >> c_rand >>= putStrLn . show
then this results in (probably) a different number returned each call, since the compiler knows it's impure:
16807
282475249
So you're back to having to use IO for the calls to the standard libraries anyway.