Is there any python package that allows the efficient computation of the PDF (probability density function) of a multivariate normal distribution?
It doesn\'t seem to be
I just made one for my purposes so I though I'd share. It's built using "the powers" of numpy, on the formula of the non degenerate case from http://en.wikipedia.org/wiki/Multivariate_normal_distribution and it aso validates the input.
Here is the code along with a sample run
from numpy import *
import math
# covariance matrix
sigma = matrix([[2.3, 0, 0, 0],
[0, 1.5, 0, 0],
[0, 0, 1.7, 0],
[0, 0, 0, 2]
])
# mean vector
mu = array([2,3,8,10])
# input
x = array([2.1,3.5,8, 9.5])
def norm_pdf_multivariate(x, mu, sigma):
size = len(x)
if size == len(mu) and (size, size) == sigma.shape:
det = linalg.det(sigma)
if det == 0:
raise NameError("The covariance matrix can't be singular")
norm_const = 1.0/ ( math.pow((2*pi),float(size)/2) * math.pow(det,1.0/2) )
x_mu = matrix(x - mu)
inv = sigma.I
result = math.pow(math.e, -0.5 * (x_mu * inv * x_mu.T))
return norm_const * result
else:
raise NameError("The dimensions of the input don't match")
print norm_pdf_multivariate(x, mu, sigma)