I code the Knight\'s tour algorithm in c++ using Backtracking method. But it seems too slow or stuck in infinite loop for n > 7 (bigger than 7
Here is my 2 cents. I started with the basic backtracking algorithm. It was waiting indefinitely for n > 7 as you mentioned. I implemented warnsdorff rule and it works like a magic and gives result in less than a second for boards of sizes till n = 31. For n >31, it was giving stackoverflow error as recursion depth exceeded the limit. I could find a better discussion here which talks about problems with warnsdorff rule and possible further optimizations.
Just for the reference, I am providing my python implementation of Knight's Tour problem with warnsdorff optimization
def isValidMove(grid, x, y):
maxL = len(grid)-1
if x maxL or y maxL or grid[x][y] > -1 :
return False
return True
def getValidMoves(grid, x, y, validMoves):
return [ (i,j) for i,j in validMoves if isValidMove(grid, x+i, y+j) ]
def movesSortedbyNumNextValidMoves(grid, x, y, legalMoves):
nextValidMoves = [ (i,j) for i,j in getValidMoves(grid,x,y,legalMoves) ]
# find the number of valid moves for each of the possible valid mode from x,y
withNumNextValidMoves = [ (len(getValidMoves(grid,x+i,y+j,legalMoves)),i,j) for i,j in nextValidMoves]
# sort based on the number so that the one with smallest number of valid moves comes on the top
return [ (t[1],t[2]) for t in sorted(withNumNextValidMoves) ]
def _solveKnightsTour(grid, x, y, num, legalMoves):
if num == pow(len(grid),2):
return True
for i,j in movesSortedbyNumNextValidMoves(grid,x,y,legalMoves):
#For testing the advantage of warnsdorff heuristics, comment the above line and uncomment the below line
#for i,j in getValidMoves(grid,x,y,legalMoves):
xN,yN = x+i,y+j
if isValidMove(grid,xN,yN):
grid[xN][yN] = num
if _solveKnightsTour(grid, xN, yN, num+1, legalMoves):
return True
grid[xN][yN] = -2
return False
def solveKnightsTour(gridSize, startX=0, startY=0):
legalMoves = [(2,1),(2,-1),(-2,1),(-2,-1),(1,2),(1,-2),(-1,2),(-1,-2)]
#Initializing the grid
grid = [ x[:] for x in [[-1]*gridSize]*gridSize ]
grid[startX][startY] = 0
if _solveKnightsTour(grid,startX,startY,1,legalMoves):
for row in grid:
print ' '.join(str(e) for e in row)
else:
print 'Could not solve the problem..'