I am working on a multi label problem and i am trying to determine the accuracy of my model.
My model:
NUM_CLASSES
I believe the bug in your code is in: correct_prediction = tf.equal( tf.round( pred ), tf.round( y_ ) )
.
pred
should be unscaled logits (i.e. without a final sigmoid).
Here you want to compare the output of sigmoid(pred)
and y_
(both in the interval [0, 1]
) so you have to write:
correct_prediction = tf.equal(tf.round(tf.nn.sigmoid(pred)), tf.round(y_))
Then to compute:
accuracy1 = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
all_labels_true = tf.reduce_min(tf.cast(correct_prediction), tf.float32), 1)
accuracy2 = tf.reduce_mean(all_labels_true)