The question posed came about during a 2nd Year Comp Science lecture while discussing the impossibility of generating numbers in a deterministic computational device.
Th
Using ping timing data by itself would not be truly random, but it can be used as a source of entropy which can then be used to generate truly random data.
By itself, timing data from network operations (such as ping) would not be uniformly distributed. (And the idea of selecting random hosts is not practical - many will not respond at all, and the differences between hosts can be huge, with gaps between ranges of response time - think satellite connections).
However, while the timing will not be well distributed, there will be some level of randomness in the data. Or to put it another way, a level of information entropy is present. It is a fine idea to feed the timing data into a random number generator to seed it. So what level of entropy is present?
For network timing data of say around 50ms, measured to the nearest 0.1ms, with a spread of values of 2ms, you have about 20 values. Rounding down to the nearest power of 2 (16 = 2^4) you have 4 bits of entropy per timing value. If it is for any kind of secure application (such as generating cryptographic keys) then I would be conservative and say it was only 2 or 3 bits of entropy per reading. (Note that I've done a very rough estimate here, and ignored the possibility of attack).
For true random numbers, you need to send the data into something designed along the lines of /dev/random that will collect the entropy, distributing it within a data store (using some kind of hash function, usually a secure one). At the same time, the entropy estimate is increased. So for a 128 bit AES key, 64 ping timings would be required before the entropy pool had enough entropy.
To be more robust, you could then add timing data from the keyboard and mouse usage, hard disk response times, motherboard sensor data (eg temperature), etc. It increases the rate of entropy collection and makes it hard for an attacker to monitor all sources of entropy. And indeed this is what is done with modern systems. The full list of MS Windows entropy sources is listed in the second comment of this post.
For discussion of the (computer security) attacks on random number generators, and the design of a cryptographically secure random number generator, you could do worse than read the yarrow paper by Bruce Schneier and John Kelsey. (Yarrow is used by BSD and Mac OS X systems).