I was told to use the caret package in order to perform Support Vector Machine regression with 10 fold cross validation on a data set I have. I\'m plotting my response variable
You have to save your CV predictions via the "savePred" option in your trainControl
object. I'm not sure what package your "cadets" data is from, but here is a trivial example using iris:
> library(caret)
> ctrl <- trainControl(method = "cv", savePred=T, classProb=T)
> mod <- train(Species~., data=iris, method = "svmLinear", trControl = ctrl)
> head(mod$pred)
pred obs setosa versicolor virginica rowIndex .C Resample
1 setosa setosa 0.982533940 0.009013592 0.008452468 11 0.25 Fold01
2 setosa setosa 0.955755054 0.032289120 0.011955826 35 0.25 Fold01
3 setosa setosa 0.941292675 0.044903583 0.013803742 46 0.25 Fold01
4 setosa setosa 0.983559919 0.008310323 0.008129757 49 0.25 Fold01
5 setosa setosa 0.972285699 0.018109218 0.009605083 50 0.25 Fold01
6 versicolor versicolor 0.007223973 0.971168170 0.021607858 59 0.25 Fold01
EDIT: The "C" is one of tuning parameters for your SVM. Check out the help for the ksvm
function in the kernlab package for more details.
EDIT2: Trivial regression example
> library(caret)
> ctrl <- trainControl(method = "cv", savePred=T)
> mod <- train(Sepal.Length~., data=iris, method = "svmLinear", trControl = ctrl)
> head(mod$pred)
pred obs rowIndex .C Resample
1 4.756119 4.8 13 0.25 Fold01
2 4.910948 4.8 31 0.25 Fold01
3 5.094275 4.9 38 0.25 Fold01
4 4.728503 4.8 46 0.25 Fold01
5 5.192965 5.3 49 0.25 Fold01
6 5.969479 5.9 62 0.25 Fold01