what changes when your input is giga/terabyte sized?

后端 未结 4 600
无人共我
无人共我 2021-01-30 14:54

I just took my first baby step today into real scientific computing today when I was shown a data set where the smallest file is 48000 fields by 1600 rows (haplotypes for severa

4条回答
  •  清酒与你
    2021-01-30 15:07

    I'm currently engaged in high-performance computing in a small corner of the oil industry and regularly work with datasets of the orders of magnitude you are concerned about. Here are some points to consider:

    1. Databases don't have a lot of traction in this domain. Almost all our data is kept in files, some of those files are based on tape file formats designed in the 70s. I think that part of the reason for the non-use of databases is historic; 10, even 5, years ago I think that Oracle and its kin just weren't up to the task of managing single datasets of O(TB) let alone a database of 1000s of such datasets.

      Another reason is a conceptual mismatch between the normalisation rules for effective database analysis and design and the nature of scientific data sets.

      I think (though I'm not sure) that the performance reason(s) are much less persuasive today. And the concept-mismatch reason is probably also less pressing now that most of the major databases available can cope with spatial data sets which are generally a much closer conceptual fit to other scientific datasets. I have seen an increasing use of databases for storing meta-data, with some sort of reference, then, to the file(s) containing the sensor data.

      However, I'd still be looking at, in fact am looking at, HDF5. It has a couple of attractions for me (a) it's just another file format so I don't have to install a DBMS and wrestle with its complexities, and (b) with the right hardware I can read/write an HDF5 file in parallel. (Yes, I know that I can read and write databases in parallel too).

    2. Which takes me to the second point: when dealing with very large datasets you really need to be thinking of using parallel computation. I work mostly in Fortran, one of its strengths is its array syntax which fits very well onto a lot of scientific computing; another is the good support for parallelisation available. I believe that Python has all sorts of parallelisation support too so it's probably not a bad choice for you.

      Sure you can add parallelism on to sequential systems, but it's much better to start out designing for parallelism. To take just one example: the best sequential algorithm for a problem is very often not the best candidate for parallelisation. You might be better off using a different algorithm, one which scales better on multiple processors. Which leads neatly to the next point.

    3. I think also that you may have to come to terms with surrendering any attachments you have (if you have them) to lots of clever algorithms and data structures which work well when all your data is resident in memory. Very often trying to adapt them to the situation where you can't get the data into memory all at once, is much harder (and less performant) than brute-force and regarding the entire file as one large array.

    4. Performance starts to matter in a serious way, both the execution performance of programs, and developer performance. It's not that a 1TB dataset requires 10 times as much code as a 1GB dataset so you have to work faster, it's that some of the ideas that you will need to implement will be crazily complex, and probably have to be written by domain specialists, ie the scientists you are working with. Here the domain specialists write in Matlab.

    But this is going on too long, I'd better get back to work

提交回复
热议问题