I\'d like to ask fellow SO\'ers for their opinions regarding best of breed data structures to be used for indexing time-series (aka column-wise data, aka flat linear).
T
You would probably want to use some type of large, balanced tree. Like Tobias mentioned, B-trees would be the standard choice for solving the first problem. If you also care about getting fast insertions and updates, there is a lot of new work being done at places like MIT and CMU into these new "cache oblivious B-trees". For some discussion of the implementation of these things, look up Tokutek DB, they've got a number of good presentations like the following:
http://tokutek.com/downloads/mysqluc-2010-fractal-trees.pdf
Questions 2 and 3 are in general a lot harder, since they involve higher dimensional range searching. The standard data structure for doing this would be the range tree (which gives O(log^{d-1}(n)) query time, at the cost of O(n log^d(n)) storage). You generally would not want to use a k-d tree for something like this. While it is true that kd trees have optimal, O(n), storage costs, it is a fact that you can't evaluate range queries any faster than O(n^{(d-1)/d}) if you only use O(n) storage. For d=2, this would be O(sqrt(n)) time complexity; and frankly that isn't going to cut it if you have 10^10 data points (who wants to wait for O(10^5) disk reads to complete on a simple range query?)
Fortunately, it sounds like your situation you really don't need to worry too much about the general case. Because all of your data comes from a time series, you only ever have at most one value per each time coordinate. Hypothetically, what you could do is just use a range query to pull some interval of points, then as a post process go through and apply the v constraints pointwise. This would be the first thing I would try (after getting a good database implementation), and if it works then you are done! It really only makes sense to try optimizing the latter two queries if you keep running into situations where the number of points in [t0, t1] x [-infty,+infty] is orders of magnitude larger than the number of points in [t0,t1] x [v0, v1].