As an exercise in Haskell, I\'m trying to implement heapsort. The heap is usually implemented as an array in imperative languages, but this would be hugely inefficient in purely
As an exercise in Haskell, I implemented an imperative heapsort with the ST Monad.
{-# LANGUAGE ScopedTypeVariables #-}
import Control.Monad (forM, forM_)
import Control.Monad.ST (ST, runST)
import Data.Array.MArray (newListArray, readArray, writeArray)
import Data.Array.ST (STArray)
import Data.STRef (newSTRef, readSTRef, writeSTRef)
heapSort :: forall a. Ord a => [a] -> [a]
heapSort list = runST $ do
let n = length list
heap <- newListArray (1, n) list :: ST s (STArray s Int a)
heapSizeRef <- newSTRef n
let
heapifyDown pos = do
val <- readArray heap pos
heapSize <- readSTRef heapSizeRef
let children = filter (<= heapSize) [pos*2, pos*2+1]
childrenVals <- forM children $ \i -> do
childVal <- readArray heap i
return (childVal, i)
let (minChildVal, minChildIdx) = minimum childrenVals
if null children || val < minChildVal
then return ()
else do
writeArray heap pos minChildVal
writeArray heap minChildIdx val
heapifyDown minChildIdx
lastParent = n `div` 2
forM_ [lastParent,lastParent-1..1] heapifyDown
forM [n,n-1..1] $ \i -> do
top <- readArray heap 1
val <- readArray heap i
writeArray heap 1 val
writeSTRef heapSizeRef (i-1)
heapifyDown 1
return top
btw I contest that if it's not purely functional then there is no point in doing so in Haskell. I think my toy implementation is much nicer than what one would achieve in C++ with templates, passing around stuff to the inner functions.