A HashMap essentially has O(1) performance while a switch state can have either O(1) or O(log(n)) depending on if the compiler uses a tableswitch or lookup switch.
Under
The accepted answer is wrong here.
http://java-performance.info/string-switch-implementation/
Switches will always be as fast as if not faster than hash maps. Switch statements are transformed into direct lookup tables. In the case of Integer values (ints, enums, shorts, longs) it is a direct lookup/jmp to the statement. There is no additional hashing that needs to happen. In the case of a String, it precomputes the string hash for the case statements and uses the input String's hashcode to determine where to jump. In the case of collision, it does an if/else chain. Now you might think "This is the same as HashMap, right?" But that isn't true. The hash code for the lookup is computed at compile time and it isn't reduced based on the number of elements (lower chance of collision).
Switches have O(1) lookup, not O(n). (Ok, in truth for a small number of items, switches are turned into if/else statements. This provides better code locality and avoids additional memory lookups. However, for many items, switches are changed into the lookup table I mentioned above).
You can read more about it here How does Java's switch work under the hood?