So… this NoSQL thing

后端 未结 8 1963
醉酒成梦
醉酒成梦 2021-01-30 12:43

I\'ve been looking at MongoDB and I\'m fascinated. It appears (although I have to be suspicious) that in exchange for organizing my database in a slightly different way, I get a

8条回答
  •  北恋
    北恋 (楼主)
    2021-01-30 13:31

    Let me hit the questions one at a time:

    I know I can't do transactions across relationships... when would this be a big deal?

    Picture cascading deletes. Or even just basic referential integrity. The concept of "foreign keys" can't really be enforced across "collections" (the Mongo term for tables). You can do atomic writes to only a single "document" (AKA record). So if you have a DB issue, you can orphan data in the DB.

    I get as much performance as I have CPUs and RAM for free?

    Not free, but definitely with a different set of trade-offs. For example, Mongo is great at running single-record, key/value look-ups. However, Mongo is poor at running relational queries. You'll need to use map-reduce for many of these. Mongo is a "RAM-whore". Mongo basically demands 64-bit for any significant dataset. Mongo will suck up drive space, load up a 140GB DB and you can end up using 200+ GB as the swap file grows during use.

    And you're still going to want a fast drive.

    In fact, I think it's safe to say the MongoDB is really a DB system that caters to leading-edge hardware (64-bit, lots of RAM, SSDs). I mean, the whole DB is centered around looking up data index data in RAM (hello 64-bit) and then doing focused random lookups on the drive (hello SSD).

    why ... doesn't the entire industry jump ship from MySQL?

    1. It's not ACID-compliant. Probably quite bad for the banking system (of course, most of them are still processing flat files, but that's a different issue). However, note that you can force "safe" writes with Mongo and guarantee that data gets to disk, but only one "document" at a time.
    2. It's still very young. Lots of big business are still running old versions of Crystal Reports on their SQL Server 2000 app written in VB6. Or they're building enterprise service buses to manage the crazy heterogeneous environments they've built up over the years.
    3. It's a very different paradigm. Maybe 30% of the questions I regularly see on Mongo mailing lists (and here) are fundamentally tied to "how do I do query X?" or "how do I structure this data?". Using MongoDB typically requires that you denormalize in advance. This is not only a little difficult, it's untrained. Most people only learn "normalization" in school, nobody teaches us how to denormalize for performance.
    4. It's not the right tool for everything. Honestly I think that MongoDB is great tool for reading and writing transactional data. That simple "one-a-time" CRUD that comprises much of modern apps. However, MongoDB is not really great at reporting. In fact, I honestly envision that the next step is not "Mongo for everything" it's "Mongo for transactional" and "MySQL for reporting". When your data gets big enough that you throw out "real-time reporting", then using Map-Reduce to populate a reporting DB doesn't seem that bad.

    As I understood it, as you scale, you get MySQL to feed Memcache. Now it appears I can start with something equally performant from the beginning.

    Honestly, I'm working towards this on a few of my projects. Again, I think that MongoDB actually does make a valid caching layer. In fact, it makes a file-backed caching layer. So if you're capable of pushing MySQL change to Mongo, then you're getting getting Memcached without cache misses. It also makes it easy to "warm the cache" on new server, just copy files and start Mongo pointing at the correct folder, it really is that easy.

提交回复
热议问题