As a toy example I\'m trying to fit a function f(x) = 1/x
from 100 no-noise data points. The matlab default implementation is phenomenally successful with mean squa
btw, here's a slightly cleaned up version of the above that cleans up some of the shape issues and unnecessary bouncing between tf and np. It achieves 3e-08 after 40k steps, or about 1.5e-5 after 4000:
import tensorflow as tf
import numpy as np
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
xTrain = np.linspace(0.2, 0.8, 101).reshape([1, -1])
yTrain = (1/xTrain)
x = tf.placeholder(tf.float32, [1,None])
hiddenDim = 10
b = bias_variable([hiddenDim,1])
W = weight_variable([hiddenDim, 1])
b2 = bias_variable([1])
W2 = weight_variable([1, hiddenDim])
hidden = tf.nn.sigmoid(tf.matmul(W, x) + b)
y = tf.matmul(W2, hidden) + b2
# Minimize the squared errors.
loss = tf.reduce_mean(tf.square(y - yTrain))
step = tf.Variable(0, trainable=False)
rate = tf.train.exponential_decay(0.15, step, 1, 0.9999)
optimizer = tf.train.AdamOptimizer(rate)
train = optimizer.minimize(loss, global_step=step)
init = tf.initialize_all_variables()
# Launch the graph
sess = tf.Session()
sess.run(init)
for step in xrange(0, 40001):
train.run({x: xTrain}, sess)
if step % 500 == 0:
print loss.eval({x: xTrain}, sess)
All that said, it's probably not too surprising that LMA is doing better than a more general DNN-style optimizer for fitting a 2D curve. Adam and the rest are targeting very high dimensionality problems, and LMA starts to get glacially slow for very large networks (see 12-15).