Given a snipplet of code, how will you determine the complexities in general. I find myself getting very confused with Big O questions. For example, a very simple question:
In general, deciding algorithm complexity is theoretically impossible.
However, one cool and code-centric method for doing it is to actually just think in terms of programs directly. Take your example:
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.println("*");
}
}
Now we want to analyze its complexity, so let's add a simple counter that counts the number of executions of the inner line:
int counter = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.println("*");
counter++;
}
}
Because the System.out.println line doesn't really matter, let's remove it:
int counter = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
counter++;
}
}
Now that we have only the counter left, we can obviously simplify the inner loop out:
int counter = 0;
for (int i = 0; i < n; i++) {
counter += n;
}
... because we know that the increment is run exactly n times. And now we see that counter is incremented by n exactly n times, so we simplify this to:
int counter = 0;
counter += n * n;
And we emerged with the (correct) O(n2) complexity :) It's there in the code :)
Let's look how this works for a recursive Fibonacci calculator:
int fib(int n) {
if (n < 2) return 1;
return fib(n - 1) + fib(n - 2);
}
Change the routine so that it returns the number of iterations spent inside it instead of the actual Fibonacci numbers:
int fib_count(int n) {
if (n < 2) return 1;
return fib_count(n - 1) + fib_count(n - 2);
}
It's still Fibonacci! :) So we know now that the recursive Fibonacci calculator is of complexity O(F(n)) where F is the Fibonacci number itself.
Ok, let's look at something more interesting, say simple (and inefficient) mergesort:
void mergesort(Array a, int from, int to) {
if (from >= to - 1) return;
int m = (from + to) / 2;
/* Recursively sort halves */
mergesort(a, from, m);
mergesort(m, m, to);
/* Then merge */
Array b = new Array(to - from);
int i = from;
int j = m;
int ptr = 0;
while (i < m || j < to) {
if (i == m || a[j] < a[i]) {
b[ptr] = a[j++];
} else {
b[ptr] = a[i++];
}
ptr++;
}
for (i = from; i < to; i++)
a[i] = b[i - from];
}
Because we are not interested in the actual result but the complexity, we change the routine so that it actually returns the number of units of work carried out:
int mergesort(Array a, int from, int to) {
if (from >= to - 1) return 1;
int m = (from + to) / 2;
/* Recursively sort halves */
int count = 0;
count += mergesort(a, from, m);
count += mergesort(m, m, to);
/* Then merge */
Array b = new Array(to - from);
int i = from;
int j = m;
int ptr = 0;
while (i < m || j < to) {
if (i == m || a[j] < a[i]) {
b[ptr] = a[j++];
} else {
b[ptr] = a[i++];
}
ptr++;
count++;
}
for (i = from; i < to; i++) {
count++;
a[i] = b[i - from];
}
return count;
}
Then we remove those lines that do not actually impact the counts and simplify:
int mergesort(Array a, int from, int to) {
if (from >= to - 1) return 1;
int m = (from + to) / 2;
/* Recursively sort halves */
int count = 0;
count += mergesort(a, from, m);
count += mergesort(m, m, to);
/* Then merge */
count += to - from;
/* Copy the array */
count += to - from;
return count;
}
Still simplifying a bit:
int mergesort(Array a, int from, int to) {
if (from >= to - 1) return 1;
int m = (from + to) / 2;
int count = 0;
count += mergesort(a, from, m);
count += mergesort(m, m, to);
count += (to - from) * 2;
return count;
}
We can now actually dispense with the array:
int mergesort(int from, int to) {
if (from >= to - 1) return 1;
int m = (from + to) / 2;
int count = 0;
count += mergesort(from, m);
count += mergesort(m, to);
count += (to - from) * 2;
return count;
}
We can now see that actually the absolute values of from and to do not matter any more, but only their distance, so we modify this to:
int mergesort(int d) {
if (d <= 1) return 1;
int count = 0;
count += mergesort(d / 2);
count += mergesort(d / 2);
count += d * 2;
return count;
}
And then we get to:
int mergesort(int d) {
if (d <= 1) return 1;
return 2 * mergesort(d / 2) + d * 2;
}
Here obviously d on the first call is the size of the array to be sorted, so you have the recurrence for the complexity M(x) (this is in plain sight on the second line :)
M(x) = 2(M(x/2) + x)
and this you need to solve in order to get to a closed form solution. This you do easiest by guessing the solution M(x) = x log x, and verify for the right side:
2 (x/2 log x/2 + x)
= x log x/2 + 2x
= x (log x - log 2 + 2)
= x (log x - C)
and verify it is asymptotically equivalent to the left side:
x log x - Cx
------------ = 1 - [Cx / (x log x)] = 1 - [C / log x] --> 1 - 0 = 1.
x log x