Convolutional neural networks (CNN) are designed to recognize images. It has convolutions inside, which see the edges of an object recognized on the image. Recurrent neural networks (RNN) are designed to recognize sequences, for example, a speech signal or a text. The recurrent network has cycles inside that implies the presence of short memory in the net. We have applied CNN as well as RNN choosing an appropriate machine learning algorithm to classify EEG signals for BCI: http://rnd.azoft.com/classification-eeg-signals-brain-computer-interface/