When understanding how primitive operators such as +
, -
, *
and /
are implemented in C, I found the following snippet from an
When you add two bits, following is the result: (truth table)
a | b | sum (a^b) | carry bit (a&b) (goes to next)
--+---+-----------+--------------------------------
0 | 0 | 0 | 0
0 | 1 | 1 | 0
1 | 0 | 1 | 0
1 | 1 | 0 | 1
So if you do bitwise xor, you can get the sum without carry. And if you do bitwise and you can get the carry bits.
Extending this observation for multibit numbers a
and b
a+b = sum_without_carry(a, b) + carry_bits(a, b) shifted by 1 bit left
= a^b + ((a&b) << 1)
Once b
is 0
:
a+0 = a
So algorithm boils down to:
Add(a, b)
if b == 0
return a;
else
carry_bits = a & b;
sum_bits = a ^ b;
return Add(sum_bits, carry_bits << 1);
If you get rid of recursion and convert it to a loop
Add(a, b)
while(b != 0) {
carry_bits = a & b;
sum_bits = a ^ b;
a = sum_bits;
b = carrry_bits << 1; // In next loop, add carry bits to a
}
return a;
With above algorithm in mind explanation from code should be simpler:
int t = (x & y) << 1;
Carry bits. Carry bit is 1 if 1 bit to the right in both operands is 1.
y ^= x; // x is used now
Addition without carry (Carry bits ignored)
x = t;
Reuse x to set it to carry
while(x)
Repeat while there are more carry bits
A recursive implementation (easier to understand) would be:
int add(int x, int y) {
return (y == 0) ? x : add(x ^ y, (x&y) << 1);
}
Seems that this function demonstrates how + actually works in the background
No. Usually (almost always) integer addition translates to machine instruction add. This just demonstrate an alternate implementation using bitwise xor and and.