I\'m working on a statistical application containing approximately 10 - 30 million floating point values in an array.
Several methods performing different, but independen
I am not sure whether using GPUs would be a good match given that 'largerFloatingPointArray' values need to be retrieved from memory. My understanding is that GPUs are better suited for self contained calculations.
I think turning this single process application into a distributed application running on many systems and tweaking the algorithm should speed things up considerably, depending how many systems are available.
You can use the classic 'divide and conquer' approach. The general approach I would take is as follows.
Use one system to preprocess 'largeFloatingPointArray' into a hash table or a database. This would be done in a single pass. It would use floating point value as the key, and the number of occurrences in the array as the value. Worst case scenario is that each value only occurs once, but that is unlikely. If largeFloatingPointArray keeps changing each time the application is run then in-memory hash table makes sense. If it is static, then the table could be saved in a key-value database such as Berkeley DB. Let's call this a 'lookup' system.
On another system, let's call it 'main', create chunks of work and 'scatter' the work items across N systems, and 'gather' the results as they become available. E.g a work item could be as simple as two numbers indicating the range that a system should work on. When a system completes the work, it sends back array of occurrences and it's ready to work on another chunk of work.
The performance is improved because we do not keep iterating over largeFloatingPointArray. If lookup system becomes a bottleneck, then it could be replicated on as many systems as needed.
With large enough number of systems working in parallel, it should be possible to reduce the processing time down to minutes.
I am working on a compiler for parallel programming in C targeted for many-core based systems, often referred to as microservers, that are/or will be built using multiple 'system-on-a-chip' modules within a system. ARM module vendors include Calxeda, AMD, AMCC, etc. Intel will probably also have a similar offering.
I have a version of the compiler working, which could be used for such an application. The compiler, based on C function prototypes, generates C networking code that implements inter-process communication code (IPC) across systems. One of the IPC mechanism available is socket/tcp/ip.
If you need help in implementing a distributed solution, I'd be happy to discuss it with you.
Added Nov 16, 2012.
I thought a little bit more about the algorithm and I think this should do it in a single pass. It's written in C and it should be very fast compared with what you have.
/*
* Convert the X range from 0f to 100f in steps of 0.0001f
* into a range of integers 0 to 1 + (100 * 10000) to use as an
* index into an array.
*/
#define X_MAX (1 + (100 * 10000))
/*
* Number of floats in largeFloatingPointArray needs to be defined
* below to be whatever your value is.
*/
#define LARGE_ARRAY_MAX (1000)
main()
{
int j, y, *noOfOccurances;
float *largeFloatingPointArray;
/*
* Allocate memory for largeFloatingPointArray and populate it.
*/
largeFloatingPointArray = (float *)malloc(LARGE_ARRAY_MAX * sizeof(float));
if (largeFloatingPointArray == 0) {
printf("out of memory\n");
exit(1);
}
/*
* Allocate memory to hold noOfOccurances. The index/10000 is the
* the floating point number. The contents is the count.
*
* E.g. noOfOccurances[12345] = 20, means 1.2345f occurs 20 times
* in largeFloatingPointArray.
*/
noOfOccurances = (int *)calloc(X_MAX, sizeof(int));
if (noOfOccurances == 0) {
printf("out of memory\n");
exit(1);
}
for (j = 0; j < LARGE_ARRAY_MAX; j++) {
y = (int)(largeFloatingPointArray[j] * 10000);
if (y >= 0 && y <= X_MAX) {
noOfOccurances[y]++;
}
}
}