I am looking for a way to graph grid_scores_ from GridSearchCV in sklearn. In this example I am trying to grid search for best gamma and C parameters for an SVR algorithm. My c
I wanted to do something similar (but scalable to a large number of parameters) and here is my solution to generate swarm plots of the output:
score = pd.DataFrame(gs_clf.grid_scores_).sort_values(by='mean_validation_score', ascending = False)
for i in parameters.keys():
print(i, len(parameters[i]), parameters[i])
score[i] = score.parameters.apply(lambda x: x[i])
l =['mean_validation_score'] + list(parameters.keys())
for i in list(parameters.keys()):
sns.swarmplot(data = score[l], x = i, y = 'mean_validation_score')
#plt.savefig('170705_sgd_optimisation//'+i+'.jpg', dpi = 100)
plt.show()