I\'m currently extending an image library used to categorize images and i want to find duplicate images, transformed images, and images that contain or are contained in other im
The key, I think, is that is this isn't a SIFT question. It is a question about approximate nearest neighbor search. Like image matching this too is an open research problem. You can try googling "approximate nearest neighbor search" and see what type of methods are available. If you need exact results, try: "exact nearest neighbor search".
The performace of all these geometric data structures (such as kd-trees) degrade as the number of dimensions increase, so the key I think is that you may need to represent your SIFT descriptors in a lower number of dimensions (say 10-30 instead of 256-1024) to have really efficient nearest neighbor searches (use PCA for example).
Once you have this I think it will become secondary if the data is stored in MySQL or not.