I am able to get a ROC curve using scikit-learn
with
fpr
, tpr
, thresholds = metrics.roc_curve(y_true,y_pred, pos_label=1)
, wh
DeLong Solution [NO bootstrapping]
As some of here suggested, a pROC
approach would be nice. According to pROC
documentation, confidence intervals are calculated via DeLong:
DeLong is an asymptotically exact method to evaluate the uncertainty of an AUC (DeLong et al. (1988)). Since version 1.9, pROC uses the algorithm proposed by Sun and Xu (2014) which has an O(N log N) complexity and is always faster than bootstrapping. By default, pROC will choose the DeLong method whenever possible.
Yandex Data School has a Fast DeLong implementation on their public repo:
https://github.com/yandexdataschool/roc_comparison
So all credits to them for the DeLong implementation used in this example. So here is how you get a CI via DeLong:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 6 10:06:52 2018
@author: yandexdataschool
Original Code found in:
https://github.com/yandexdataschool/roc_comparison
updated: Raul Sanchez-Vazquez
"""
import numpy as np
import scipy.stats
from scipy import stats
# AUC comparison adapted from
# https://github.com/Netflix/vmaf/
def compute_midrank(x):
"""Computes midranks.
Args:
x - a 1D numpy array
Returns:
array of midranks
"""
J = np.argsort(x)
Z = x[J]
N = len(x)
T = np.zeros(N, dtype=np.float)
i = 0
while i < N:
j = i
while j < N and Z[j] == Z[i]:
j += 1
T[i:j] = 0.5*(i + j - 1)
i = j
T2 = np.empty(N, dtype=np.float)
# Note(kazeevn) +1 is due to Python using 0-based indexing
# instead of 1-based in the AUC formula in the paper
T2[J] = T + 1
return T2
def compute_midrank_weight(x, sample_weight):
"""Computes midranks.
Args:
x - a 1D numpy array
Returns:
array of midranks
"""
J = np.argsort(x)
Z = x[J]
cumulative_weight = np.cumsum(sample_weight[J])
N = len(x)
T = np.zeros(N, dtype=np.float)
i = 0
while i < N:
j = i
while j < N and Z[j] == Z[i]:
j += 1
T[i:j] = cumulative_weight[i:j].mean()
i = j
T2 = np.empty(N, dtype=np.float)
T2[J] = T
return T2
def fastDeLong(predictions_sorted_transposed, label_1_count, sample_weight):
if sample_weight is None:
return fastDeLong_no_weights(predictions_sorted_transposed, label_1_count)
else:
return fastDeLong_weights(predictions_sorted_transposed, label_1_count, sample_weight)
def fastDeLong_weights(predictions_sorted_transposed, label_1_count, sample_weight):
"""
The fast version of DeLong's method for computing the covariance of
unadjusted AUC.
Args:
predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples]
sorted such as the examples with label "1" are first
Returns:
(AUC value, DeLong covariance)
Reference:
@article{sun2014fast,
title={Fast Implementation of DeLong's Algorithm for
Comparing the Areas Under Correlated Receiver Oerating Characteristic Curves},
author={Xu Sun and Weichao Xu},
journal={IEEE Signal Processing Letters},
volume={21},
number={11},
pages={1389--1393},
year={2014},
publisher={IEEE}
}
"""
# Short variables are named as they are in the paper
m = label_1_count
n = predictions_sorted_transposed.shape[1] - m
positive_examples = predictions_sorted_transposed[:, :m]
negative_examples = predictions_sorted_transposed[:, m:]
k = predictions_sorted_transposed.shape[0]
tx = np.empty([k, m], dtype=np.float)
ty = np.empty([k, n], dtype=np.float)
tz = np.empty([k, m + n], dtype=np.float)
for r in range(k):
tx[r, :] = compute_midrank_weight(positive_examples[r, :], sample_weight[:m])
ty[r, :] = compute_midrank_weight(negative_examples[r, :], sample_weight[m:])
tz[r, :] = compute_midrank_weight(predictions_sorted_transposed[r, :], sample_weight)
total_positive_weights = sample_weight[:m].sum()
total_negative_weights = sample_weight[m:].sum()
pair_weights = np.dot(sample_weight[:m, np.newaxis], sample_weight[np.newaxis, m:])
total_pair_weights = pair_weights.sum()
aucs = (sample_weight[:m]*(tz[:, :m] - tx)).sum(axis=1) / total_pair_weights
v01 = (tz[:, :m] - tx[:, :]) / total_negative_weights
v10 = 1. - (tz[:, m:] - ty[:, :]) / total_positive_weights
sx = np.cov(v01)
sy = np.cov(v10)
delongcov = sx / m + sy / n
return aucs, delongcov
def fastDeLong_no_weights(predictions_sorted_transposed, label_1_count):
"""
The fast version of DeLong's method for computing the covariance of
unadjusted AUC.
Args:
predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples]
sorted such as the examples with label "1" are first
Returns:
(AUC value, DeLong covariance)
Reference:
@article{sun2014fast,
title={Fast Implementation of DeLong's Algorithm for
Comparing the Areas Under Correlated Receiver Oerating
Characteristic Curves},
author={Xu Sun and Weichao Xu},
journal={IEEE Signal Processing Letters},
volume={21},
number={11},
pages={1389--1393},
year={2014},
publisher={IEEE}
}
"""
# Short variables are named as they are in the paper
m = label_1_count
n = predictions_sorted_transposed.shape[1] - m
positive_examples = predictions_sorted_transposed[:, :m]
negative_examples = predictions_sorted_transposed[:, m:]
k = predictions_sorted_transposed.shape[0]
tx = np.empty([k, m], dtype=np.float)
ty = np.empty([k, n], dtype=np.float)
tz = np.empty([k, m + n], dtype=np.float)
for r in range(k):
tx[r, :] = compute_midrank(positive_examples[r, :])
ty[r, :] = compute_midrank(negative_examples[r, :])
tz[r, :] = compute_midrank(predictions_sorted_transposed[r, :])
aucs = tz[:, :m].sum(axis=1) / m / n - float(m + 1.0) / 2.0 / n
v01 = (tz[:, :m] - tx[:, :]) / n
v10 = 1.0 - (tz[:, m:] - ty[:, :]) / m
sx = np.cov(v01)
sy = np.cov(v10)
delongcov = sx / m + sy / n
return aucs, delongcov
def calc_pvalue(aucs, sigma):
"""Computes log(10) of p-values.
Args:
aucs: 1D array of AUCs
sigma: AUC DeLong covariances
Returns:
log10(pvalue)
"""
l = np.array([[1, -1]])
z = np.abs(np.diff(aucs)) / np.sqrt(np.dot(np.dot(l, sigma), l.T))
return np.log10(2) + scipy.stats.norm.logsf(z, loc=0, scale=1) / np.log(10)
def compute_ground_truth_statistics(ground_truth, sample_weight):
assert np.array_equal(np.unique(ground_truth), [0, 1])
order = (-ground_truth).argsort()
label_1_count = int(ground_truth.sum())
if sample_weight is None:
ordered_sample_weight = None
else:
ordered_sample_weight = sample_weight[order]
return order, label_1_count, ordered_sample_weight
def delong_roc_variance(ground_truth, predictions, sample_weight=None):
"""
Computes ROC AUC variance for a single set of predictions
Args:
ground_truth: np.array of 0 and 1
predictions: np.array of floats of the probability of being class 1
"""
order, label_1_count, ordered_sample_weight = compute_ground_truth_statistics(
ground_truth, sample_weight)
predictions_sorted_transposed = predictions[np.newaxis, order]
aucs, delongcov = fastDeLong(predictions_sorted_transposed, label_1_count, ordered_sample_weight)
assert len(aucs) == 1, "There is a bug in the code, please forward this to the developers"
return aucs[0], delongcov
alpha = .95
y_pred = np.array([0.21, 0.32, 0.63, 0.35, 0.92, 0.79, 0.82, 0.99, 0.04])
y_true = np.array([0, 1, 0, 0, 1, 1, 0, 1, 0 ])
auc, auc_cov = delong_roc_variance(
y_true,
y_pred)
auc_std = np.sqrt(auc_cov)
lower_upper_q = np.abs(np.array([0, 1]) - (1 - alpha) / 2)
ci = stats.norm.ppf(
lower_upper_q,
loc=auc,
scale=auc_std)
ci[ci > 1] = 1
print('AUC:', auc)
print('AUC COV:', auc_cov)
print('95% AUC CI:', ci)
output:
AUC: 0.8
AUC COV: 0.028749999999999998
95% AUC CI: [0.46767194, 1.]
I've also checked that this implementation matches the pROC
results obtained from R
:
library(pROC)
y_true = c(0, 1, 0, 0, 1, 1, 0, 1, 0)
y_pred = c(0.21, 0.32, 0.63, 0.35, 0.92, 0.79, 0.82, 0.99, 0.04)
# Build a ROC object and compute the AUC
roc = roc(y_true, y_pred)
roc
output:
Call:
roc.default(response = y_true, predictor = y_pred)
Data: y_pred in 5 controls (y_true 0) < 4 cases (y_true 1).
Area under the curve: 0.8
Then
# Compute the Confidence Interval
ci(roc)
output
95% CI: 0.4677-1 (DeLong)